CO
Christopher Ott
Author with expertise in Targeted Protein Degradation in Biomedical Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(73% Open Access)
Cited by:
1,985
h-index:
27
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer

Shaokun Shu et al.Jan 1, 2016
BET inhibitors that target bromodomain chromatin readers such as BRD4 are being explored as potential therapeutics in cancer; here triple-negative breast cancer cell lines are shown to respond to BET inhibitors and resistance seems to be associated with transcriptional changes rather than drug efflux and mutations, opening potential avenues to improve clinical responses to BET inhibitors. BET inhibitors that target bromodomain chromatin readers such as BRD4 are being explored as potential therapeutics in cancer. Here Kornelia Polyak and colleagues investigate the response of breast cancer cell lines and xenograft mouse models to BET inhibitors. They find that triple-negative breast cancer cell lines respond to BET inhibitors. Resistance can emerge, but there is no evidence for mechanisms involving drug efflux or mutations in the bromodomain genes or known driver genes. Instead, there are transcriptional changes and increased recruitment of BRD4 to chromatin independent of its bromodomain, concomitant with its increased phosphorylation. Together with two recent Nature publications from the laboratories of Mark Dawson and Johannes Zuber dealing with different cancers, the study suggests potential avenues to improve clinical responses to BET inhibitors. Jeff Settleman discusses all three papers in News & Views. Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy1,2,3. BET bromodomain inhibitors, which have shown efficacy in several models of cancer4,5,6, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs7,8,9. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance.
0
Citation536
0
Save
2

Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins

Ryosuke Shirasaki et al.Jan 1, 2021
Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex. The substantial gene-level differences for resistance mechanisms to CRBN- versus VHL-based degraders explains mechanistically the lack of cross-resistance with sequential administration of these two degrader classes. Development of degraders leveraging more diverse E3 ligases/CRLs may facilitate sequential/alternating versus combined uses of these agents toward potentially delaying or preventing resistance.
2
Citation66
1
Save
13

APOBEC3A drives acquired resistance to targeted therapies in non-small cell lung cancer

Hideko Isozaki et al.Jan 21, 2021
Abstract Acquired drug resistance to even the most effective anti-cancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified 1‒6 , the underlying molecular mechanisms shaping tumor evolution during treatment are incompletely understood. The extent to which therapy actively drives tumor evolution by promoting mutagenic processes 7 or simply provides the selective pressure necessary for the outgrowth of drug-resistant clones 8 remains an open question. Here, we report that lung cancer targeted therapies commonly used in the clinic induce the expression of cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Induction of A3A facilitated the formation of double-strand DNA breaks (DSBs) in cycling drug-treated cells, and fully resistant clones that evolved from drug-tolerant intermediates exhibited an elevated burden of chromosomal aberrations such as copy number alterations and structural variations. Preventing therapy-induced A3A mutagenesis either by gene deletion or RNAi-mediated suppression delayed the emergence of drug resistance. Finally, we observed accumulation of A3A mutations in lung cancer patients who developed drug resistance after treatment with sequential targeted therapies. These data suggest that induction of A3A mutagenesis in response to targeted therapy treatment may facilitate the development of acquired resistance in non-small-cell lung cancer. Thus, suppressing expression or enzymatic activity of A3A may represent a potential therapeutic strategy to prevent or delay acquired resistance to lung cancer targeted therapy.
13
Citation17
0
Save
28

Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities

Yuxiang Zhang et al.May 30, 2022
Abstract Histone deacetylases (HDACs) have been widely pursued as targets for anti-cancer therapeutics. However, many of these targets are universally essential for cell survival, which may limit the therapeutic window that can be achieved by drug candidates. By examining large collections of CRISPR/Cas9-based essentiality screens, we discovered a genetic interaction between HDAC1 and HDAC2 wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal translocations that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic deletion or dTAG-mediated degradation, we show that HDAC2 disruption suppresses the growth of HDAC1 -deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2/NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders. Altogether, we identify HDAC1/2 collateral synthetic lethality as a new therapeutic target and reveal a novel mechanism for exploiting NuRD-associated cancer dependencies.
28
Citation2
0
Save
43

Metabolic adaptations underpin resistance to histone acetyltransferase inhibition

Timothy Bishop et al.Aug 12, 2022
Abstract Histone acetyltransferases (HAT) catalyze the acylation of lysine side chains and are implicated in diverse human cancers as both oncogenes and non-oncogene dependencies 1 . Acetyl-CoA-competitive HAT inhibitors have garnered attention as potential cancer therapeutics and the first clinical trial for this class is ongoing ( NCT04606446 ). Despite broad enthusiasm for these targets, notably including CBP/p300 and KAT6A/B 2–5 , the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood. Using comparative transcriptional genomics, we found that the direct gene regulatory consequences of CBP/p300 HAT inhibition are indistinguishable in models of intrinsically hypersensitive and insensitive acute myeloid leukemia (AML). We therefore modelled acquired drug resistance using a forward genetic selection and identified dysregulation of coenzyme A (CoA) metabolism as a facile driver of resistance to HAT inhibitors. Specifically, drug resistance selected for mutations in PANK3 , a pantothenate kinase that controls the rate limiting step in CoA biosynthesis 6 . These mutations prevent negative feedback inhibition, resulting in drastically elevated concentrations of intracellular acetyl-CoA, which directly outcompetes drug-target engagement. This not only impacts the activity of structurally diverse CBP/p300 HAT inhibitors, but also agents related to an investigational KAT6A/B inhibitor that is currently in Phase-1 clinical trials. We further validated these results using a genome-scale CRISPR/Cas9 loss-of-function genetic modifier screen, which identified additional gene-drug interactions between HAT inhibitors and the CoA biosynthetic pathway. Top hits from the screen included the phosphatase, PANK4 , which negatively regulates CoA production and therefore suppresses sensitivity to HAT inhibition upon knockout 7 , as well as the pantothenate transporter, SLC5A6 8 , which enhances sensitivity. Altogether, this work uncovers CoA plasticity as an unexpected but potentially class-wide liability of anti-cancer HAT inhibitors and will therefore buoy future efforts to optimize the efficacy of this new form of targeted therapy.
43
Citation1
0
Save
0

Identification of candidate master transcription factors within enhancer-centric transcriptional regulatory networks

Alexander Federation et al.Jun 12, 2018
Regulation of gene expression through binding of transcription factors (TFs) to cis-regulatory elements is highly complex in mammalian cells. Genome-wide measurement technologies provide new means to understand this regulation, and models of TF regulatory networks have been built with the goal of identifying critical factors. Here, we report a network model of transcriptional regulation between TFs constructed by integrating genome-wide identification of active enhancers and regions of focal DNA accessibility. Network topology is confirmed by published TF ChIP-seq data. By considering multiple methods of TF prioritization following network construction, we identify master TFs in well-studied cell types, and these networks provide better prioritization than networks only considering promoter-proximal accessibility peaks. Comparisons between networks from similar cell types show stable connectivity of most TFs, while master regulator TFs show dramatic changes in connectivity and centrality. Applying this method to study chronic lymphocytic leukemia, we prioritized several network TFs amenable to pharmacological perturbation and show that compounds targeting these TFs show comparable efficacy in CLL cell lines to FDA-approved therapies. The construction of transcriptional regulatory network (TRN) models can predict the interactions between individual TFs and predict critical TFs for development or disease.
0

Targeted Degradation of CDK9 Potently Disrupts the MYC Transcriptional Network

Mohammed Toure et al.May 15, 2024
Summary Cyclin-dependent kinase 9 (CDK9) coordinates signaling events that regulate RNA polymerase II (Pol II) pause-release states. It is an important co-factor for transcription factors, such as MYC, that drive aberrant cell proliferation when their expression is deregulated. CDK9 modulation offers an approach for attenuating dysregulation in such transcriptional programs. As a result, numerous drug development campaigns to inhibit CDK9 kinase activity have been pursued. More recently, targeted degradation has emerged as an attractive approach. However, comprehensive evaluation of degradation versus inhibition is still critically needed to assess the biological contexts in which degradation might offer superior therapeutic benefits. We validated that CDK9 inhibition triggers a compensatory mechanism that dampens its effect on MYC expression and found that this feedback mechanism was absent when the kinase is degraded. Importantly, CDK9 degradation is more effective than its inhibition for disrupting MYC transcriptional regulatory circuitry likely through the abrogation of both enzymatic and scaffolding functions of CDK9. Highlights – KI-CDK9d-32 is a highly potent and selective CDK9 degrader. – KI-CDK9d-32 leads to rapid downregulation of MYC protein and mRNA transcripts levels. – KI-CDK9d-32 represses canonical MYC pathways and leads to a destabilization of nucleolar homeostasis. – Multidrug resistance ABCB1 gene emerged as the strongest resistance marker for the CDK9 PROTAC degrader.
Load More