Abstract Engaging innate immune pathways is emerging as a productive way of achieving durable anti-tumor responses. However, systemic administration of these therapies can result in toxicity, deemed to be particularly problematic when combined with current standard-of-care cytotoxic treatments such as radiotherapy. Increasing the therapeutic window of radiotherapy may be achieved by using targeted therapies, however, few pre-clinical studies investigate both tumor and normal tissue responses in detail. Here we show that targeting innate immune receptor C5aR1 improves tumor radiation response while reducing radiation-induced normal tissue toxicity, thereby increasing the therapeutic window. Genetically or pharmacologically targeting C5aR1 increases both IL-10 expression in the small intestine and IL-10 secretion by tumor cells. Increased IL-10 attenuates RelA phosphorylation and increases apoptosis in tumor cells, leading to improved radiation responses in murine models. Of note, these radiosensitizing effects are tumor-specific since, in the gastrointestinal tract, targeting C5aR1 instead results in decreased crypt cell apoptosis reduced signs of histological damage and improved survival following total abdominal irradiation in mice. Furthermore, the potent and orally active C5aR1 inhibitor, PMX205, improves tumor radiation responses even in a context of reduced/absent CD8+ T cell infiltration. These data indicate that PMX205 can modulate cancer-cell intrinsic functions to potentiate anti-tumor radiation responses even in tumors displaying features of T-cell deficiency or exclusion. Finally, using a preclinical murine model allowing the simultaneous assessment of tumor and normal tissue radiation responses, we show that PMX205 treatment reduces histological and functional markers of small-bowel toxicity while affording a positive tumor response. Our data, therefore, suggest that targeting C5aR1 could be a promising approach for increasing the therapeutic window of radiotherapy.