SS
Sirena Soriano
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
67
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Biomimetic Nanoparticles as a Theranostic Tool for Traumatic Brain Injury

Assaf Zinger et al.Mar 26, 2021
+3
G
S
A
Traumatic brain injury (TBI) triggers both central and peripheral inflammatory responses. Existing pharmacological drugs are unable to effectively and quickly target the brain inflamed regions, setting up a major roadblock towards effective brain trauma treatments. Nanoparticles (NPs) have been used in multiple diseases as drug delivery tools with remarkable success due to their rapid diffusion and specificity in the target organ. Here, leukocyte-based biomimetic NPs are fabricated as a theranostic tool to directly access inflamed regions in a TBI mouse model. This NP systemic delivery is visualized using advanced in vivo imaging techniques, including intravital microscopy and in vivo imaging system. The results demonstrate selective targeting of NPs to the injured brain and increased NPs accumulation among the peripheral organs 24 h after TBI. Interestingly, increased microglial proliferation, decreased macrophage infiltration, and reduced brain lesion following the NPs treatments compared to sham vehicle-treated mice are also found. In summary, the results suggest that NPs represent a promising future theranostic tool for TBI treatment.
2
Citation36
0
Save
4

Alterations to the gut microbiome after sport-related concussion in a collegiate football players cohort: A pilot study

Sirena Soriano et al.May 1, 2022
+12
S
K
S
Concussions, both single and repetitive, cause brain and body alterations in athletes during contact sports. The role of the brain-gut connection and changes in the microbiota have not been well established after sports-related concussions or repetitive subconcussive impacts. We recruited 33 Division I Collegiate football players and collected blood, stool, and saliva samples at three time points throughout the athletic season: mid-season, following the last competitive game (post-season), and after a resting period in the off-season. Additional samples were collected from four athletes that suffered from a concussion. 16S rRNA sequencing of the gut microbiome revealed a decrease in abundance for two bacterial species, Eubacterium rectale, and Anaerostipes hadrus, after a diagnosed concussion. No significant differences were found regarding the salivary microbiome. Serum biomarker analysis shows an increase in GFAP blood levels in athletes during the competitive season. Additionally, S100β and SAA blood levels were positively correlated with the abundance of Eubacterium rectale species among the group of athletes that did not suffer a diagnosed concussion during the sports season. These findings provide initial evidence that detecting changes in the gut microbiome may help to improve concussion diagnosis following head injury.
4
Citation15
4
Save
1

Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads

Kristen Curry et al.May 3, 2021
+12
M
Q
K
ABSTRACT 16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate of long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from one simulated data set and two mock communities prove Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.
1
Citation13
0
Save
2

Sex-dependent improvement in traumatic brain injury outcomes after liposomal delivery of dexamethasone in mice

Gherardo Baudo et al.May 17, 2023
+6
H
A
G
ABSTRACT Traumatic Brain Injury (TBI) can have long-lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas. To address this issue, we have developed a liposomal nanocarrier (Lipo) encapsulating dexamethasone (Dex), an agonist for the glucocorticoid receptor utilized to alleviate inflammation and swelling in various conditions. In vitro studies show that Lipo-Dex were well tolerated in human and murine neural cells. Lipo-Dex showed significant suppression of inflammatory cytokines, IL-6 and TNF-α, release after induction of neural inflammation with lipopolysaccharide. Further, the Lipo-Dex were administered to young adult male and female C57BL/6 mice immediately after a controlled cortical impact injury. Our findings demonstrate that Lipo-Dex can selectively target the injured brain, thereby reducing lesion volume, cell death, astrogliosis, the release of proinflammatory cytokines, and microglial activation compared to Lipo-treated mice in a sex-dependent manner, showing a major impact only in male mice. This highlights the importance of considering sex as a crucial variable in developing and evaluating new nano-therapies for brain injury. These results suggest that Lipo-Dex administration may effectively treat acute TBI.
2
Citation2
0
Save
3

Sex‐dependent improvement in traumatic brain injury outcomes after liposomal delivery of dexamethasone in mice

Gherardo Baudo et al.Feb 4, 2024
+6
M
H
G
Abstract Traumatic brain injury (TBI) can have long‐lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas. To address this issue, we have developed a liposomal nanocarrier (Lipo) encapsulating dexamethasone (Dex), an agonist for the glucocorticoid receptor utilized to alleviate inflammation and swelling in various conditions. In vitro studies show that Lipo‐Dex were well tolerated in human and murine neural cells. Lipo‐Dex showed significant suppression of inflammatory cytokines, IL‐6 and TNF‐α, release after induction of neural inflammation with lipopolysaccharide. Further, the Lipo‐Dex were administered to young adult male and female C57BL/6 mice immediately after controlled cortical impact injury (a TBI model). Our findings demonstrate that Lipo‐Dex can selectively target the injured brain, thereby reducing lesion volume, cell death, astrogliosis, the release of pro‐inflammatory cytokines, and microglial activation compared to Lipo‐treated mice in a sex‐dependent manner, showing a major impact only in male mice. This highlights the importance of considering sex as a crucial variable in developing and evaluating new nano‐therapies for brain injury. These results suggest that Lipo‐Dex administration may effectively treat acute TBI.
3
Citation1
0
Save
0

Probiotic treatment causes sex-specific neuroprotection after traumatic brain injury in mice

Morgan Holcomb et al.Apr 2, 2024
+5
H
A
M
ABSTRACT Background Recent studies have shed light on the potential role of gut dysbiosis in shaping traumatic brain injury (TBI) outcomes. Changes in the levels and types of Lactobacillus bacteria present might impact the immune system disturbances, neuroinflammatory responses, anxiety and depressive-like behaviors, and compromised neuroprotection mechanisms triggered by TBI. Objective This study aimed to investigate the effects of a daily pan-probiotic (PP) mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticus, L. fermentum, L. rhamnosus, L. gasseri, and L. casei , administered for either two or seven weeks before inducing TBI on both male and female mice. Methods Mice were subjected to controlled cortical impact (CCI) injury. Short-chain fatty acids (SCFAs) analysis was performed for metabolite measurements. The taxonomic profiles of murine fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis. Histological analyses were used to assess neuroinflammation and gut changes post-TBI, while behavioral tests were conducted to evaluate sensorimotor and cognitive functions. Results Our findings suggest that PP administration modulates the diversity and composition of the microbiome and increases the levels of SCFAs in a sex-dependent manner. We also observed a reduction of lesion volume, cell death, and microglial and macrophage activation after PP treatment following TBI in male mice. Furthermore, PP-treated mice show motor function improvements and decreases in anxiety and depressive-like behaviors. Conclusion Our findings suggest that PP administration can mitigate neuroinflammation and ameliorate motor and anxiety and depressive-like behavior deficits following TBI. These results underscore the potential of probiotic interventions as a viable therapeutic strategy to address TBI-induced impairments, emphasizing the need for gender-specific treatment approaches.
0

Counter-balancing X-linkedMecp2hypofunction by hyperfunction ameliorates disease features in a model of Rett syndrome: implications for genetic therapies

Christopher McGraw et al.Jan 20, 2024
+7
S
S
C
Treating monogenic neurodevelopmental disorders remains challenging and mostly symptomatic. X-linked disorders affecting women such as the postnatal neurodevelopmental disorder Rett syndrome caused by mutations in the gene MECP2 have additional challenges due to dosage sensitivity and to cellular mosaicism caused by random X-chromosome inactivation. An approach to augment MECP2 expression from wild-type cells in RTT may be feasible and simpler than gene replacement but has never been tested due to known toxicity of MECP2 over-expression, as evidenced by the distinct neurological condition known as MECP2 Duplication Syndrome. Here, using genetic techniques, we find that counter-balancing Mecp2-null cells in female Mecp2 -null/+ mice by a complementary population of cells harboring an X-linked transgene associated with 3X normal levels of MECP2 leads to normalization of multiple whole animal phenotypic outcomes without noticeable toxicity. In addition, in vivo LFP recordings demonstrate that counter-balancing Mecp2 loss-of-function improves select within-region and between-region abnormalities. By comparing the counter-balance approach with an approach based on cell autonomous restoration of MeCP2 using an autosomal transgene expressing 2X normal levels of MECP2 in all cells (mimicking gene replacement), we identify neurobehavioral and electrographic features best suited for preclinical biomarkers of a therapeutic response to cell autonomous versus non-cell autonomous correction. Notably, these proof-of-concept findings demonstrate how non-cell autonomous suppression of MeCP2 deficiency by boosting overall wild-type MeCP2 levels may be a viable disease-modifying therapy for RTT, with potential implications for genetic-based therapies of monogenic X-linked disorders.
1

Fecal microbiota transplantation derived from Alzheimer’s disease mice worsens brain trauma outcomes in wild-type controls

Sirena Soriano et al.Nov 23, 2021
+3
K
T
S
Abstract Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration, both which increase the risk and accelerate the progression of Alzheimer’s disease (AD). The gut microbiome is an essential modulator of the immune system, impacting in the brain. AD has been related with reduced diversity and alterations in the community composition of the gut microbiota. This study aimed to determine whether the gut microbiota from AD mice exacerbates neurological deficits after TBI in control mice. We prepared fecal microbiota transplants from 18-24 months old 3xTg-AD (FMT-AD) and from healthy controls (FMT-young) mice. FMTs were administered orally to young control C57BL/6 (wild-type, WT) mice after they underwent controlled cortical impact (CCI) injury, as a model of TBI. Then, we characterized the microbiota composition of the fecal samples by full-length 16S rRNA gene sequencing analysis. We collected the blood, brain, and gut tissues for protein and immunohistochemical analysis. Our results showed that FMT-AD administration stimulates a higher relative abundance of the genus Muribaculum and a decrease in Lactobacillus johnsonii compared to FMT-young in WT mice. Furthermore, WT mice exhibited larger lesion, increased activated microglia/macrophages, and reduced motor recovery after FMT-AD compared to FMT-young one day after TBI. In summary, we observed gut microbiota from AD mice to have a detrimental effect and aggravate the neuroinflammatory response and neurological outcomes after TBI in young WT mice.