JS
Jasdeep Singh
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
434
h-index:
14
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial

Raches Ella et al.Nov 11, 2021
BackgroundWe report the clinical efficacy against COVID-19 infection of BBV152, a whole virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) in Indian adults.MethodsWe did a randomised, double-blind, placebo-controlled, multicentre, phase 3 clinical trial in 25 Indian hospitals or medical clinics to evaluate the efficacy, safety, and immunological lot consistency of BBV152. Adults (age ≥18 years) who were healthy or had stable chronic medical conditions (not an immunocompromising condition or requiring treatment with immunosuppressive therapy) were randomised 1:1 with a computer-generated randomisation scheme (stratified for the presence or absence of chronic conditions) to receive two intramuscular doses of vaccine or placebo administered 4 weeks apart. Participants, investigators, study coordinators, study-related personnel, the sponsor, and nurses who administered the vaccines were masked to treatment group allocation; an unmasked contract research organisation and a masked expert adjudication panel assessed outcomes. The primary outcome was the efficacy of the BBV152 vaccine in preventing a first occurrence of laboratory-confirmed (RT-PCR-positive) symptomatic COVID-19 (any severity), occurring at least 14 days after the second dose in the per-protocol population. We also assessed safety and reactogenicity throughout the duration of the study in all participants who had received at least one dose of vaccine or placebo. This report contains interim results (data cutoff May 17, 2021) regarding immunogenicity and safety outcomes (captured on days 0 to 56) and efficacy results with a median of 99 days for the study population. The trial was registered on the Indian Clinical Trials Registry India, CTRI/2020/11/028976, and ClinicalTrials.gov, NCT04641481 (active, not recruiting).FindingsBetween Nov 16, 2020, and Jan 7, 2021, we recruited 25 798 participants who were randomly assigned to receive BBV152 or placebo; 24 419 received two doses of BBV152 (n=12 221) or placebo (n=12 198). Efficacy analysis was dependent on having 130 cases of symptomatic COVID-19, which occurred when 16 973 initially seronegative participants had at least 14 days follow-up after the second dose. 24 (0·3%) cases occurred among 8471 vaccine recipients and 106 (1·2%) among 8502 placebo recipients, giving an overall estimated vaccine efficacy of 77·8% (95% CI 65·2–86·4). In the safety population (n=25 753), 5959 adverse events occurred in 3194 participants. BBV152 was well tolerated; the same proportion of participants reported adverse events in the vaccine group (1597 [12·4%] of 12 879) and placebo group (1597 [12·4%] of 12 874), with no clinically significant differences in the distributions of solicited, unsolicited, or serious adverse events between the groups, and no cases of anaphylaxis or vaccine-related deaths.InterpretationBBV152 was highly efficacious against laboratory-confirmed symptomatic COVID-19 disease in adults. Vaccination was well tolerated with no safety concerns raised in this interim analysis.FundingBharat Biotech International and Indian Council of Medical Research.
0
Paper
Citation315
0
Save
1

Mapping the genomic landscape & diversity of COVID-19 based on >3950 clinical isolates of SARS-CoV-2: Likely origin & transmission dynamics of isolates sequenced in India

Jasdeep Singh et al.Jan 1, 2020
Sir, The COVID-19 pandemic has stalled the world and catapulted the global health systems into unprecedented chaos. More than 200 countries have been affected by this pandemic, resulting in 2.54 million cases in a short period of time and >0.17 million deaths (as of April 23, 2020), with a mere 0.7 million recoveries1. The movement of COVID-19 hotspot from China to Europe, and now to the USA, has been partly due to the staggered restrictions in global travel and partly due to potent transmission through asymptomatic carriers2. India, with 21,393 cases and 681 deaths (as of April 23, 2020)1, had the lowest figures for any country of the comparable population (0.5 deaths per million population). International travellers or their close contacts formed the majority of initially reported cases. The delayed onset of COVID-19 in India has given it an edge, which allowed it to impose severe restrictions to contain the local spread 345. In our in-depth analyses of 1500+ genomes, variability among clinical isolates was shown along the timeline, leading to distinct clustering of SARS-CoV-2 across the globe (unpublished observation). It was predicted, based on the aggregation propensity of the spike protein in the Wuhan and other isolates of SARS-CoV-2, that this virus would exhibit very high transmissibility and confer survival fitness67. Genetic diversity of the virus increases with disease progression and can be utilized to model the evolution and propagation of the disease6 Recently, phylogenetic network analysis of 160 SARS-CoV-2 genome samples showed a parallel evolution of the virus and its evolutionary selection in their human hosts8. Similar whole-genome analyses of the Indian isolates and their comparison with global isolates can provide a better understanding of dominant clades within the population and unveil targets for developing specific interventions. In the present study, machine learning-based t-SNE analysis of global clinical isolates has been utilized to segregate the clinical isolates into clusters while accommodating the outliers910. Whole-genome analysis of 3968 global isolates obtained from GISAID (Global initiative on sharing all influenza data)11, including 25 SARS-CoV-2 genomes sequenced in India [next-genome sequencing (NGS) data submitted by the ICMR-National Institute of Virology, Pune, India] and presented in (Figure 1) (Supplementary Fig. 1 (available from http://www.ijmr.org.in/articles/2020/151/5/images/IndianJMedRes_2020_151_5_474_284485_sm5.pdf) and [Supplementary Table 1 (available from http://www.ijmr.org.in/articles/2020/151/5/images/IndianJMedRes_2020_151_5_474_284485_sm6.pdf)), was an attempt to dissect the global genome diversity and also critically evaluate the placement of Indian isolates to understand the COVID-19 pandemic in India.Fig. 1: Whole-genome-based t-SNE clustering of 3968 clinical isolates. (A) Comparative genome-based clustering of Indian isolates (red) with Chinease isolates (blue). (B) Comapartive genome-based clustering of Indian isolates (red) and Chinese isolates (blue) with rest of the world (green). (C) Diversity in clinical isolates showing three distinct clustering using hierarchical clustering on the t-SNE clusters. (t-SNE: https://github.com/jdonaldson/rtsne).Supplementary Table I: Details of Indian samples along with their origin and placement in Hierarchical clusters. Genomic sequences were retrieved from GISAID (https://www.gisaid.org)The initial cases reported from India had a travel history to China, which explained its position in a Chinese cluster5 (Fig. 2). The travel ban from China to India, in early February 2020, has prevented the large-scale spill-over directly from China to the Indian Sub-continent. However, various isolates transmitted from other South-East Asian countries might fall in the same cluster. The overlap of Indian samples majorly with European samples (Supplementary Fig. 1, Panel III) reiterated the fact that the delayed travel restriction from the European hotspot regions affected not just India but also many countries.Fig. 2: Position of various Indian isolates with other nations. (A-E) Clustering of SARS-CoV-2 genome sequences from India (red) with other nations around the globe. Indian samples clustered with samples from different nations – China, Kuwait, Canada, USA and Spain in whole-genome-based clustering. Figures were generated using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).Hierarchical-based clustering further yielded exciting outcomes on the inter-continent transmission of COVID-19. The segregation of SARS-CoV-2 genomes into three clades indicates the emergence of evolutionary diversity (Fig. 1C). The heterogeneity of these clusters, grouped along with Chinese counterparts, validates a global spill-over event originating from Wuhan512. Hierarchical cluster 2 in Supplementary Figure 1 Panel II (coloured by the continents) indicates the introduction of SARS-CoV-2 in India from the European, other Asian and North American nations (Supplementary Fig. 1). Detailed comparative analysis of Indian isolates with respect to other countries showed its close relationship with samples from China, USA, Canada, Spain and Kuwait, suggestive of exposure to COVID-19 due to travel history from these nations (Fig. 2). However, limited genome sequences from India make it difficult to differentiate and ascertain global transmission and transmission within the country. The conservation of an amino acid in any protein sequence denotes its functional importance1314 as it undergoes fewer amino acid replacements or is more likely to substitute amino acids with similar biochemical properties. The amino acid conservation is inversely proportionate to the evolutionary rate. This is a valuable gauge of the evolutionary divergence and the analogous genomic regions. Sequence similarity between the open reading frames (ORFs) of Indian isolates and the initial sample collected in Wuhan unravels conservation in five ORFs corresponding to envelope protein, membrane glycoprotein, ORF6, ORF7b and ORF10 proteins (Fig. 3A). On the contrary, a number of mutations were observed in ORF1a, ORF1b, spike protein (surface glycoprotein), ORF3a, ORF7a, ORF8 and nucleocapsid phosphoprotein (Supplementary Fig. 2 (available from http://www.ijmr.org.in/articles/2020/151/5/images/IndianJMedRes_2020_151_5_474_284485_sm7.pdf and Supplementary Table II (available from http://www.ijmr.org.in/articles/2020/151/5/images/IndianJMedRes_2020_151_5_474_284485_sm8.pdf)). Mean similarity calculated for these ORFs revealed that ORF1a in the Indian isolates was less conserved (more mutated) compared to global isolates (Fig. 3A and Supplementary Table III (available from http://www.ijmr.org.in/articles/2020/151/5/images/IndianJMedRes_2020_151_5_474_284485_sm9.pdf)). In all other ORFs, a relatively higher conservation was observed among Indian isolates compared to Wuhan strain. When compared with global isolates, Indian isolates have higher entropy for changes in ORF 1a and ORF 1b (Supplementary Fig. 3 (available from http://www.ijmr.org.in/articles/2020/151/5/images/IndianJMedRes_2020_151_5_474_284485_sm10.pdf)).. Further, qualitative analysis of mutations in non-conserved ORFs showed that each type of amino acid had undergone mutation in the Indian isolates (Fig. 3B). These mutations could be a major contributing factor for the separation of Indian isolates into three distinct clusters. Higher sampling rate driven by NGS of the Indian isolates would help in better understanding of actual variability in SARS-CoV-2 and assist both in identifying better diagnostic markers and in developing specific interventions in terms of vaccine candidates and drug targets.Fig. 3: Sequence similarity and mutation analysis of open reading frames. (A) Comparison of mean sequence similarity for open reading frames between Indian and global isolates with Wuhan strain. (B) Qualitative analysis on type of mutations occurring in non-conserved open reading frames (ORFs) of Indian isolates compared to Wuhan strain.Supplementary Table II: Specific high frequency (>=10%) mutations in individual ORFs in Indian isolates compared with reference strain (Wuhan_IPBCAMS-WH-01_2019_EPI_ISL_402123). The sequences with less than 25% gaps were selected for all the studies. Genomic sequences were retrieved from GISAID (https://www.gisaid.org)Supplementary Table III: Comparison of mean sequence similarity for ORFs between Indian and global isolates with Wuhan strainEvolutionary divergence, corroborated by epidemiological data, is a valuable tool to implement appropriate measures against this pandemic. The population density of India and the presence of functionally distinct isolates in the Indian population raise concerns and warrant an urgent need for higher sampling rate for better assessment of the evolution of SARS-CoV-2 in India. The situation is further confounded by the fact that many of these Indian isolates submitted in databanks include those of Indians living in Iran, Italian tourists visiting India, and also contains samples cultured in vitro. In conclusion, a whole-genome diversity analysis of 3968 global clinical isolates, including 25 isolates sequenced in India, of SARS-CoV-2 was done. The variations in different open reading frames (ORFs) of SARS-CoV-2, which drives the formation of distinct Indian clusters and functional heterogeneity, were highlighted. Five ORFs corresponding to envelope protein, membrane glycoprotein, ORF6, ORF7b and ORF10 were found to be highly conserved, while a number of mutations were observed in ORF1a, ORF1b, spike protein, ORF3a, ORF7a, ORF8 and nucleocapsid phosphoprotein. Generating diverse genomic datasets will provide insight into the propagation dynamics of COVID-19, leading to a better understanding of pathogenesis and evolution of SARS-CoV-2, which will eventually lead to better intervention methods. Acknowledgment The seventh author (SEH) acknowledges Department of Biotechnology, Government of India for funding support (BT/PR23099/NER/95/632/2017), (BT/PR23155/NER/95/634/2017). SEH is a JC Bose National Fellow, Department of Science and Technology, Government of India & Robert Koch Fellow, Robert Koch Institute, Berlin. The first author (HS) is a recipient of Women Scientist fellowship, Department of Health Research and the second (JS) & fourth (SJ) authors received Young Scientist fellowships from the Department of Health Research, Ministry of Health and Family Welfare, Government of India. The sixth author (JAS) received UGC Startup grant and the third author (MK) received Silver Jubilee Post-Doctoral fellowship from Jamia Hamdard, New Delhi. Authors acknowledge the Originating and Submitting Laboratories for their sequences and meta-data shared through GISAID on which this study is based. Authors acknowledge BioInception Pvt. Ltd, for providing their proprietary data analysis pipeline and platform.
1
Citation17
0
Save
10

Structure-function investigation of a new VUI-202012/01 SARS-CoV-2 variant

Jasdeep Singh et al.Jan 4, 2021
Abstract The SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus) has accumulated multiple mutations during its global circulation. Recently, a new strain of SARS-CoV-2 (VUI 202012/01) had been identified leading to sudden spike in COVID-19 cases in South-East England. The strain has accumulated 23 mutations which have been linked to its immune evasion and higher transmission capabilities. Here, we have highlighted structural-function impact of crucial mutations occurring in spike (S), ORF8 and nucleocapsid (N) protein of SARS-CoV-2. Some of these mutations might confer higher fitness to SARS-CoV-2. Summary Since initial outbreak of COVID-19 in Wuhan city of central China, its causative agent; SARS-CoV-2 virus has claimed more than 1.7 million lives out of 77 million populations and still counting. As a result of global research efforts involving public-private-partnerships, more than 0.2 million complete genome sequences have been made available through Global Initiative on Sharing All Influenza Data (GISAID). Similar to previously characterized coronaviruses (CoVs), the positive-sense single-stranded RNA SARS-CoV-2 genome codes for ORF1ab non-structural proteins (nsp(s)) followed by ten or more structural/nsps [1, 2]. The structural proteins include crucial spike (S), nucleocapsid (N), membrane (M), and envelope (E) proteins. The S protein mediates initial contacts with human hosts while the E and M proteins function in viral assembly and budding. In recent reports on evolution of SARS-CoV-2, three lineage defining non-synonymous mutations; namely D614G in S protein (Clade G), G251V in ORF3a (Clade V) and L84S in ORF 8 (Clade S) were observed [2–4]. The latest pioneering works by Plante et al and Hou et al have shown that compared to ancestral strain, the ubiquitous D614G variant (clade G) of SARS-CoV-2 exhibits efficient replication in upper respiratory tract epithelial cells and transmission, thereby conferring higher fitness [5, 6]. As per latest WHO reports on COVID-19, a new strain referred as SARS-CoV-2 VUI 202012/01 (Variant Under Investigation, year 2020, month 12, variant 01) had been identified as a part of virological and epidemiological analysis, due to sudden rise in COVID-19 detected cases in South-East England [7]. Preliminary reports from UK suggested higher transmissibility (increase by 40-70%) of this strain, escalating Ro (basic reproduction number) of virus to 1.5-1.7 [7, 8]. This apparent fast spreading variant inculcates 23 mutations; 13 non-synonymous, 6 synonymous and 4 amino acid deletions [7]. In the current scenario, where immunization programs have already commenced in nations highly affected by COVID-19, advent of this new strain variant has raised concerns worldwide on its possible role in disease severity and antibody responses. The mutations also could also have significant impact on diagnostic assays owing to S gene target failures.
10
Citation15
0
Save
48

Possible link between higher transmissibility of B.1.617 and B.1.1.7 variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity

Vipul Kumar et al.Apr 29, 2021
Abstract The Severe Acute syndrome corona Virus 2 (SARS-CoV-2) outbreak in December 2019 has caused a global pandemic. The rapid mutation rate in the virus has caused alarming situations worldwide and is being attributed to the false negativity in RT-PCR tests, which also might lead to inefficacy of the available drugs. It has also increased the chances of reinfection and immune escape. We have performed Molecular Dynamic simulations of three different Spike-ACE2 complexes, namely Wildtype (WT), B.1.1.7 variant (N501Y Spike mutant) and B.1.617 variant (L452R, E484Q Spike mutant) and compared their dynamics, binding energy and molecular interactions. Our result shows that mutation has caused the increase in the binding energy between the Spike and hACE2. In the case of B.1.617 variant, the mutations at L452R and E484Q increased the stability and intra-chain interactions in the Spike protein, which may change the interaction ability of human antibodies to this Spike variant. Further, we found that the B.1.1.7 variant had increased hydrogen interaction with LYS353 of hACE2 and more binding affinity in comparison to WT. The current study provides the biophysical basis for understanding the molecular mechanism and rationale behind the increase in the transmissivity and infectivity of the mutants compared to wild-type SARS-CoV-2.
48
Citation14
0
Save
12

Mutational signatures in countries affected by SARS-CoV-2: Implications in host-pathogen interactome

Jasdeep Singh et al.Sep 17, 2020
Abstract We are in the midst of the third severe coronavirus outbreak caused by SARS-CoV-2 with unprecedented health and socio-economic consequences due to the COVID-19. Globally, the major thrust of scientific efforts has shifted to the design of potent vaccine and anti-viral candidates. Earlier genome analyses have shown global dominance of some mutations purportedly indicative of similar infectivity and transmissibility of SARS-CoV-2 worldwide. Using high-quality large dataset of 25k whole-genome sequences, we show emergence of new cluster of mutations as result of geographic evolution of SARS-CoV-2 in local population (≥10%) of different nations. Using statistical analysis, we observe that these mutations have either significantly co-occurred in globally dominant strains or have shown mutual exclusivity in other cases. These mutations potentially modulate structural stability of proteins, some of which forms part of SARS-CoV-2-human interactome. The high confidence druggable host proteins are also up-regulated during SARS-CoV-2 infection. Mutations occurring in potential hot-spot regions within likely T-cell and B-cell epitopes or in proteins as part of host-viral interactome, could hamper vaccine or drug efficacy in local population. Overall, our study provides comprehensive view of emerging geo-clonal mutations which would aid researchers to understand and develop effective countermeasures in the current crisis. Significance Our comparative analysis of globally dominant mutations and region-specific mutations in 25k SARS-CoV-2 genomes elucidates its geo-clonal evolution. We observe locally dominant mutations (co-occurring or mutually exclusive) in nations with contrasting COVID-19 mortalities per million of population) besides globally dominant ones namely, P314L (ORF1b) and D164G (S) type. We also see exclusive dominant mutations such as in Brazil (I33T in ORF6 and I292T in N protein), England (G251V in ORF3a), India (T2016K and L3606F in ORF1a) and in Spain (L84S in ORF8). The emergence of these local mutations in ORFs within SARS-CoV-2 genome could have interventional implications and also points towards their potential in modulating infectivity of SARS-CoV-2 in regional population.
12
Citation6
0
Save
1

SARS-CoV-2 ORF8 can fold into human factor 1 catalytic domain binding site on complement C3b: Predict functional mimicry

Jasdeep Singh et al.Jun 9, 2020
Abstract Pathogens are often known to use host factor mimicry to take evolutionary advantage. As the function of the non-structural ORF8 protein of SARS-CoV-2 in the context of host-pathogen relationship is still obscure, we investigated its role in host factor mimicry using computational protein modelling techniques. Modest sequence similarity of ORF8 of SARS-CoV-2 with the substrate binding site within the C-terminus serine-protease catalytic domain of human complement factor 1 (F1; PDB ID: 2XRC), prompted us to verify their resemblance at the structural level. The modelled ORF8 protein was found to superimpose on the F1 fragment. Further, protein-protein interaction simulation confirmed ORF8 binding to C3b, an endogenous substrate of F1, via F1-interacting region on C3b. Docking results suggest ORF8 to occupy the binding groove adjacent to the conserved “arginine-serine” (RS) F1-mediated cleavage sites on C3b. Comparative H-bond interaction dynamics indicated ORF8/C3b binding to be of higher affinity than the F1/C3b interaction. Hence, ORF8 is predicted to inhibit C3b proteolysis by competing with F1 for C3b binding using molecular mimicry with a possibility of triggering unregulated complement activation. This could offer a mechanistic premise for the unrestrained complement activation observed in large number of SARS-CoV-2 infected patients.
1
Citation4
0
Save
1

Molecular Analyses of Over Hundred Sixty Clinical Isolates of SARS-CoV-2: Insights on Likely Origin, Evolution and Spread, and Possible Intervention

Salma Jamal et al.Mar 23, 2020
We are witnessing the severe third outbreak mediated by coronaviruses affecting global public health with unprecedented economic consequences. A better understanding of its phylogenetics, exploration of sequence features and mutational changes could unveil its genealogy to gain insights into the mechanism of transmission and development of possible interventions. Our comparative genomic analyses of &gt;160 isolates of SARS-CoV-2 reveal phylogenetic kinship with other coronaviruses and emergence of evolutionary divergence in clinical isolates. t-SNE-based clustering revealed different clades but no continent specific clusters. Amino acid substitutions at RBD of spike protein provide possible reasons for rapid transmission. Few proteins specific to SARS-CoV-2 were identified which could have implications as therapeutic targets and diagnostic biomarkers. Virtual screening identified repurposed drugs, known nutraceuticals, for specific interventions. These phylogenetic observations reveal the ancestry and computational studies reveal the emergency measures to interject this emerging pathogen that pose threat to whole of mankind.
1
Citation3
0
Save
5

Penetratin inhibits α-synuclein fibrillation and improves locomotor functions in mice model of Parkinson’s disease

Arpit Gupta et al.Jun 26, 2022
Abstract Parkinson’s disease (PD) is the second most common neurodegenerative disease. The presence of lewy bodies, primarily consisting of α-synuclein (α-syn) aggregates is one of the common features seen in the substantia nigra region of the brain in PD patients. The disease remains incurable and only symptomatic relief is available. We screened various cell-penetrating peptides and reveal that penetratin is a potent inhibitor of α-syn aggregation in-vitro , and significantly improved locomotor coordination in mice models of PD in-vivo . The peptide inhibits α-syn aggregation in vitro as well as in yeast, and C.elegans models. We further made a cyclic derivative of penetratin by disulfide coupling of N- and C-terminal cysteine residues. Both penetratin and its cyclized derivative interact with α-syn. NMR studies show that both linear as well as cyclic derivative interact at the acidic C-terminal tail of the protein. Similar to penetratin, its cyclic derivative inhibited α-syn aggregation in the C.elegans model of Parkinson’s disease, and also improved worm motility. Molecular Dynamics studies show that penetratin interacts with α-synuclein and prevents its conformational transition from disordered into β-sheet rich structure. The therapeutic efficacy of penetratin was further confirmed in a transgenic mice model of the disease, wherein penetratin treatment over a period of 90 days improved locomotor coordination, and halted disease progression. Overall, the present work provides a potent therapeutic agent that could be further explored in the management of PD.
5
Citation2
0
Save