MB
Mallory Bernstein
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,215
h-index:
18
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization

Sandile Cele et al.Dec 23, 2021
+57
D
L
S
Abstract The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections 1 . Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.
0

Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma

Sandile Cele et al.Mar 29, 2021
+18
L
I
S
SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations1,2 and may reduce the efficacy of current vaccines that target the spike glycoprotein of SARS-CoV-23. Here, using a live-virus neutralization assay, we compared the neutralization of a non-VOC variant with the 501Y.V2 VOC (also known as B.1.351) using plasma collected from adults who were hospitalized with COVID-19 during the two waves of infection in South Africa, the second wave of which was dominated by infections with the 501Y.V2 variant. Sequencing demonstrated that infections of plasma donors from the first wave were with viruses that did not contain the mutations associated with 501Y.V2, except for one infection that contained the E484K substitution in the receptor-binding domain. The 501Y.V2 virus variant was effectively neutralized by plasma from individuals who were infected during the second wave. The first-wave virus variant was effectively neutralized by plasma from first-wave infections. However, the 501Y.V2 variant was poorly cross-neutralized by plasma from individuals with first-wave infections; the efficacy was reduced by 15.1-fold relative to neutralization of 501Y.V2 by plasma from individuals infected in the second wave. By contrast, cross-neutralization of first-wave virus variants using plasma from individuals with second-wave infections was more effective, showing only a 2.3-fold decrease relative to neutralization of first-wave virus variants by plasma from individuals infected in the first wave. Although we tested only one plasma sample from an individual infected with a SARS-CoV-2 variant with only the E484K substitution, this plasma sample potently neutralized both variants. The observed effective neutralization of first-wave virus by plasma from individuals infected with 501Y.V2 provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages. Cross-neutralization assays of early variants and the 501Y.V2 variant of SARS-CoV-2 show that plasma from individuals infected with 501Y.V2 effectively neutralizes all variants, indicating that a vaccine that targets 501Y.V2 may also be effective against other SARS-CoV-2 variants.
0

T cell responses to SARS-CoV-2 spike cross-recognize Omicron

Roanne Keeton et al.Jan 31, 2022
+44
A
M
R
Abstract The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations 1,2 that contribute to viral escape from antibody neutralization 3–6 and reduce vaccine protection from infection 7,8 . The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients ( n = 70). Between 70% and 80% of the CD4 + and CD8 + T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections ( n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants ( n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere 9–12 .
0
Citation496
0
Save
1

SARS-CoV-2 cell-to-cell spread occurs rapidly and is insensitive to antibody neutralization

Laurelle Jackson et al.Jun 1, 2021
+13
S
H
L
Abstract Viruses increase the efficiency of close-range transmission between cells by manipulating cellular physiology and behavior, and SARS-CoV-2 uses cell fusion as one mechanism for cell-to-cell spread. Here we visualized infection using time-lapse microscopy of a human lung cell line and used live virus neutralization to determine the sensitivity of SARS-CoV-2 cell-to-cell spread to neutralizing antibodies. SARS-CoV-2 infection rapidly led to cell fusion, forming multinucleated cells with clustered nuclei which started to be detected at 6h post-infection. To compare sensitivity of cell-to-cell spread to neutralization, we infected either with cell-free virus or with single infected cells expressing on their surface the SARS-CoV-2 spike protein. We tested two variants of SARS-CoV-2: B.1.117 containing only the D614G substitution, and the escape variant B.1.351. We used the much smaller area of single infected cells relative to infection foci to exclude any input infected cells which did not lead to transmission. The monoclonal antibody and convalescent plasma we tested neutralized cell-free SARS-CoV-2, with the exception of B.1.351 virus, which was poorly neutralized with plasma from non-B.1.351 infections. In contrast, cell-to-cell spread of SARS-CoV-2 showed no sensitivity to monoclonal antibody or convalescent plasma neutralization. These observations suggest that, once cells are infected, SARS-CoV-2 may be more difficult to neutralize in cell types and anatomical compartments permissive for cell-to-cell spread.
1
Citation15
0
Save
6

HIV skews the SARS-CoV-2 B cell response toward an extrafollicular maturation pathway

Robert Krause et al.Jun 15, 2022
+20
H
J
R
Abstract Background HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. Methods We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing and regulatory features. Results This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal center (GC) activity, homing capacity and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2 specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. Conclusions Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge. Funding This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative, [grant number 64809]), and the Victor Daitz Foundation.
1

Aggregated Mycobacterium tuberculosis enhances the inflammatory response

Hylton Rodel et al.Mar 23, 2021
+10
A
A
H
Abstract Mycobacterium tuberculosis (Mtb) readily aggregates in culture and Mtb aggregates in the lung were observed in experimental Mtb infection. However, the physiological consequences of Mtb aggregation are incompletely understood. Here we examined the human macrophage transcriptional response to aggregated Mtb relative to infection with non-aggregated single or multiple bacilli per host cell. Infection with aggregated Mtb led to an early upregulation of pro-inflammatory associated genes and enhanced TNF α signaling via the NF κ B pathway. Both these pathways were significantly upregulated relative to infection with single bacilli, and TNF α signaling was also significantly elevated relative to infection with multiple non-aggregated Mtb. Secretion of TNF α and downstream cytokines were also enhanced. On a longer timescale, aggregate infection led to overall increased acidification per macrophage and a high proportion of death in these cells after aggregate phagocytosis. Host cell death did not occur when Mtb aggregates were heat killed despite such clumps being readily picked up. To validate that Mtb aggregates do occur in the human lung, we document Mtb aggregates surrounding a cavity in a human TB lesion. Aggregates may therefore be present in some lesions and elicit a stronger inflammatory response resulting in recruitment of additional phagocytes and their subsequent death, potentially leading to necrosis and transmission.