SF
Senem Fred
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
466
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
114

Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine show antiviral activity against the novel variants in vitro

Senem Fred et al.Mar 23, 2021
Abstract Background and Purpose Repurposing of currently available drugs is a valuable strategy to tackle the consequences of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand these studies and test some of these compounds against newly emerged variants. Experimental Approach Several antidepressant drugs and antipsychotic drugs with different primary mechanisms of action were tested in ACE2/TMPRSS2-expressing human embryonic kidney cells against the infection by SARS-CoV-2 spike protein-dependent pseudoviruses. Some of these compounds were also tested in human lung epithelial cell line, Calu-1, against the first wave (B.1) lineage of SARS-CoV-2 and the variants of concern, B.1.1.7 and B.1.351. Key Results Several clinically used antidepressants, including fluoxetine, citalopram, reboxetine, imipramine, as well as antipsychotic compounds chlorpromazine, flupenthixol, and pimozide inhibited the infection by pseudotyped viruses with minimal effects on cell viability. The antiviral action of several of these drugs was verified in Calu-1 cells against the (B.1) lineage of SARS-CoV-2. By contrast, the anticonvulsant carbamazepine, and novel antidepressants ketamine and its derivatives as well as MAO and phosphodiesterase inhibitors phenelzine and rolipram, respectively, showed no activity in the pseudovirus model. Furthermore, fluoxetine remained effective against pseudo viruses with N501Y, K417N, and E484K spike mutations, and the VoC-1 (B.1.1.7) and VoC-2 (B.1.351) variants of SARS-CoV-2. Conclusion and Implications Our study confirms previous data and extends information on the repurposing of these drugs to counteract SARS-CoV-2 infection including different variants of concern.
114
Paper
Citation15
0
Save
21

Chondroitinase and antidepressants promote plasticity by releasing TRKB from dephosphorylating control of PTPσ in parvalbumin neurons

Angelina Lesnikova et al.Aug 13, 2020
Abstract Perineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulphate proteoglycans (CSPGs) which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates BDNF-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase sigma (PTPσ, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTPσ deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTPσ deficient mice (PTPσ+/-). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTPσ by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTPσ-CSPG complex. Significance statement Critical period-like plasticity can be reactivated in the adult visual cortex through disruption of perineuronal nets (PNNs) by chondroitinase treatment, or by chronic antidepressant treatment. We now show that the effects of both chondroitinase and fluoxetine are mediated by the neurotrophin receptor TRKB in parvalbumin-containing (PV + ) interneurons. We found that chondroitinase-induced visual cortical plasticity is dependent on TRKB in PV + neurons. Protein tyrosine phosphatase type S (PTPσ, PTPRS), a receptor for PNNs, interacts with TRKB and inhibits its phosphorylation, and chondroitinase treatment or deletion of PTPσ increases TRKB phosphorylation. Antidepressant fluoxetine disrupts the interaction between TRKB and PTPσ, thereby increasing TRKB phosphorylation. Thus, juvenile-like plasticity induced by both chondroitinase and antidepressant treatment is mediated by TRKB activation in PV + interneurons.
21
Citation2
0
Save
5

Nitric oxide-induced tyrosine nitration of TrkB impairs BDNF signaling and restrains neuronal plasticity

Caroline Biojone et al.May 8, 2022
Abstract Nitric oxide has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved - specially the guanylyl cyclase-independent ones - has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear. Here we show that nitric oxide induces nitration of the tyrosine 816 in the TRKB receptor in vivo and in vitro, and that post-translational modification inhibits TRKB phosphorylation and binding of phospholipase Cγ1 (PLCγ1) to this same tyrosine residue. Additionally, nitration triggers clathrin-dependent endocytosis of TRKB through the adaptor protein AP2M and ubiquitination, thereby increasing translocation of TRKB away from the neuronal surface and directing it towards lysosomal degradation. Accordingly, inhibition of nitric oxide increases TRKB phosphorylation and TRKB-dependent neurite branching in neuronal cultures. In vivo, chronic inhibition of neuronal nitric oxide synthase (nNOS) dramatically reduced TRKB nitration and facilitated TRKB signaling in the primary visual cortex, and promoted a shift in ocular dominance upon monocular deprivation in the visual cortex - an indicator of increased plasticity. Altogether, our data describe and characterize a new molecular brake on plasticity, namely nitration of TRKB receptors. Significance statement We described the nitration of TRKB receptors at the tyrosine residue 816 as a new post-translational modification (PTM) that restrains the signaling of the neurotrophic factor BDNF in neurons. This new PTM leads to endocytosis and degradation of the TRKB receptors. Intriguingly, this mechanism is tonically active under physiological conditions in vivo, and it is important for restricting ocular dominance plasticity in the visual cortex. This mechanism directly links two major systems involved in brain plasticity, BDNF/TRKB and nitric oxide. Our data provides a model for how NO production from nNOS can compromise TRKB function, and for the effects of nNOS inhibitors promoting plasticity.
5
Citation1
0
Save
0

Cholesterol recognition motifs in the transmembrane domain of the tyrosine kinase receptor family: the case for TRKB

Cecilia Cannarozzo et al.Aug 14, 2019
Cholesterol is an essential constituent of cell membranes. Recently, the discovery of cholesterol recognition amino acid consensus (CRAC) on proteins indicated a putative direct, non-covalent interaction between cholesterol and proteins. In the present study, we evaluated the presence of a CRAC motif and its inverted version (CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family (RTK) in several species using in silico methods. CRAC motifs were found across all species analyzed, while CARC was found only in vertebrates. The tropomyosin-related kinase B (TRKB), a member of the RTK family, is a core participant in the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon recognition of the conserved CARC motif in the TRKB, we compared the effect of point mutations in CARC on structural changes in the TMR of mouse TRKB. The alignment of wild-type and mutant TMR indicates small morphological changes across the 6 mutations analyzed (Y433F, Y433C, Y433A, V437K, R427A, and the double mutation R427A/Y433F), as demonstrated by the root-mean-squared deviation values for the superimposed structures. A molecular dynamics simulation with the mouse TRKB TMR sequence indicated that cholesterol interaction with the TRKB CARC motif is reduced by the R427A/Y433F mutation. Experimental data assayed by fluorescence recovery after photobleaching indicated a reduction in brain-derived neurotrophic factor-induced mobility of TRKB.R427A/Y433F in the spine of cultured hippocampal neurons. Therefore, CARC/CRAC motifs may have a role in the function of the RTK family TMR.
0

Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN

Cassiano Diniz et al.Jul 26, 2017
Renin-angiotensin system (RAS) is associated to peripheral fluid homeostasis and cardiovascular function, but recent evidence has also drawn its functional role in the brain. RAS has been described to regulate physiological and behavioral parameters related to stress response, including depressive symptoms. Apparently, RAS can modulate levels of brain derived neurotrophic factor (BDNF) and TRKB, which are important to neurobiology of depression and antidepressant action. However, interaction between BDNF/TRKB system and RAS in models predictive of antidepressant effect has not been investigated before. Accordingly, in the forced swimming test, we observed an antidepressant-like effect of systemic losartan but not with captopril or enalapril treatment. Moreover, infusion of losartan into ventral hippocampus (vHC) and prelimbic prefrontal cortex (PL) mimicked the consequences of systemically injected losartan, whereas K252a, a blocker of TRK, infused into these brain areas impaired such effect. PD123319, an antagonist of AT2 receptor (AGTR2), infused into PL but not into vHC, also prevented systemic losartan effect. Cultured cortical cells of rat embryos indicate that angiotensin II (ANG2), possibly through AGTR2, increases the surface levels of TRKB, and favors its coupling to FYN, a SRC family kinase. The higher levels of agtr2 in cortical cells were decreased after insult with glutamate, and under this condition an interaction between losartan and ANG2 was achieved. Occurrence of TRKB/AGTR2 heterodimers was also observed, in MG87 cells GFP-tagged AGTR2 co-immunoprecipitated with TRKB. Therefore, antidepressant-like effect of losartan is proposed to occur through a shift of ANG2 binding towards AGTR2, followed by coupling of TRK/FYN and putative TRKB transactivation. Thus, AGTR1 show therapeutic potential as novel antidepressant therapy.
0

Pharmacologically diverse antidepressant drugs disrupt the interaction of BDNF receptor TRKB and the endocytic adaptor AP-2

Senem Fred et al.Mar 28, 2019
Antidepressant drugs activate TRKB (tropomyosin-related kinase B), however it remains unclear whether these compounds employ a common mechanism for achieving this effect. We found by using mass spectrometry that the interaction of several proteins with TRKB was disrupted in the hippocampus of fluoxetine-treated animals (single intraperitoneal injection), including members of the AP-2 complex (adaptor protein complex-2) involved in vesicular endocytosis. The interaction of TRKB with the cargo-docking mu subunit of the AP-2 complex (AP2M) was disrupted by both acute and repeated fluoxetine treatment. However, while the coupling between full length TRKB and AP2M was disrupted by fluoxetine, the interaction between AP2M and the TRKB C-terminal peptide was resistant to this drug, indicating that the binding site targeted by fluoxetine must lie outside of the TRKB:AP2M interface. In addition to fluoxetine, other pharmacologically diverse antidepressants imipramine, rolipram, phenelzine, ketamine, and the ketamine metabolite 2R,6R-hydroxynorketamine (RR-HNK) also decreased the interaction between TRKB:AP2M in vitro , as measured by ELISA. Silencing the expression of AP2M in MG87.TRKB cell line led to increased surface positioning of TRKB and to a higher response to BDNF (brain-derived neurotrophic factor), observed as the levels of active TRKB. Moreover, animals haploinsufficient for the Ap2m1 gene displayed increased levels of active TRKB in vivo , as well as an enhanced cell surface expression of the receptor in cultured hippocampal neurons.Taken together, our data suggests that disruption of the TRKB:AP2M interaction is an effect shared by several antidepressants with diverse chemical structures and canonical modes of action.