GL
Gabriele Lohmann
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(80% Open Access)
Cited by:
3,915
h-index:
41
/
i10-index:
73
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Precuneus shares intrinsic functional architecture in humans and monkeys

Daniel Margulies et al.Nov 11, 2009
Evidence from macaque monkey tracing studies suggests connectivity-based subdivisions within the precuneus, offering predictions for similar subdivisions in the human. Here we present functional connectivity analyses of this region using resting-state functional MRI data collected from both humans and macaque monkeys. Three distinct patterns of functional connectivity were demonstrated within the precuneus of both species, with each subdivision suggesting a discrete functional role: (i) the anterior precuneus, functionally connected with the superior parietal cortex, paracentral lobule, and motor cortex, suggesting a sensorimotor region; (ii) the central precuneus, functionally connected to the dorsolateral prefrontal, dorsomedial prefrontal, and multimodal lateral inferior parietal cortex, suggesting a cognitive/associative region; and (iii) the posterior precuneus, displaying functional connectivity with adjacent visual cortical regions. These functional connectivity patterns were differentiated from the more ventral networks associated with the posterior cingulate, which connected with limbic structures such as the medial temporal cortex, dorsal and ventromedial prefrontal regions, posterior lateral inferior parietal regions, and the lateral temporal cortex. Our findings are consistent with predictions from anatomical tracer studies in the monkey, and provide support that resting-state functional connectivity (RSFC) may in part reflect underlying anatomy. These subdivisions within the precuneus suggest that neuroimaging studies will benefit from treating this region as anatomically (and thus functionally) heterogeneous. Furthermore, the consistency between functional connectivity networks in monkeys and humans provides support for RSFC as a viable tool for addressing cross-species comparisons of functional neuroanatomy.
0

Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

Johannes Stelzer et al.Apr 16, 2014
Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a non-parametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM). The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.
0

Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain

Gabriele Lohmann et al.Apr 27, 2010
Functional magnetic resonance data acquired in a task-absent condition (“resting state”) require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Google's PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular “betweenness centrality” - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level.
0

Deficient approaches to human neuroimaging

Johannes Stelzer et al.Jul 1, 2014
Functional magnetic resonance imaging (fMRI) is the workhorse of imaging-based human cognitive neuroscience. The use of fMRI is ever-increasing; within the last 4 years more fMRI studies have been published than in the previous 17 years. This large body of research has mainly focused on the functional localization of condition- or stimulus-dependent changes in the blood-oxygenation-level dependent signal. In recent years, however, many aspects of the commonly practiced analysis frameworks and methodologies have been critically reassessed. Here we summarize these critiques, providing an overview of the major conceptual and practical deficiencies in widely used brain-mapping approaches, and exemplify some of these issues by the use of imaging data and simulations. In particular, we discuss the inherent pitfalls and shortcomings of methodologies for statistical parametric mapping. Our critique emphasizes recent reports of excessively high numbers of both false positive and false negative findings in fMRI brain mapping. We outline our view regarding the broader scientific implications of these methodological considerations and briefly discuss possible solutions.
16

Predicting intelligence from fMRI data of the human brain in a few minutes of scan time

Gabriele Lohmann et al.Mar 19, 2021
Abstract In recent years, the prediction of individual behaviour from the fMRI-based functional connectome has become a major focus of research. The motivation behind this research is to find generalizable neuromarkers of cognitive functions. However, insufficient prediction accuracies and long scan time requirements are still unsolved issues. Here we propose a new machine learning algorithm for predicting intelligence scores of healthy human subjects from resting state (rsfMRI) or task-based fMRI (tfMRI). In a cohort of 390 unrelated test subjects of the Human Connectome Project, we found correlations between the observed and the predicted general intelligence of more than 50 percent in tfMRI, and of around 59 percent when results from two tasks are combined. Surprisingly, we found that the tfMRI data were significantly more predictive of intelligence than rsfMRI even though they were acquired at much shorter scan times (approximately 10 minutes versus 1 hour). Existing methods that we investigated in a benchmark comparison underperformed on tfMRI data and produced prediction accuracies well below our results. Our proposed algorithm differs from existing methods in that it achieves dimensionality reduction via ensemble learning and partial least squares regression rather than via brain parcellations or ICA decompositions. In addition, it introduces Ricci-Forman curvature as a novel type of edge weight.
0

Inflated false negative rates undermine reproducibility in task-based fMRI

Gabriele Lohmann et al.Mar 31, 2017
Abstract Reproducibility is generally regarded as a hallmark of scientific validity. It can be undermined by two very different factors, namely inflated false positive rates or inflated false negative rates. Here we investigate the role of the second factor, i.e. the degree to which true effects are not detected reliably. The availability of large public databases and also supercomputing allows us to tackle this problem quantitatively. Specifically, we estimated the reproducibility in task-based fMRI data over different samples randomly drawn from a large cohort of subjects obtained from the Human Connectome Project. We use the full cohort as a standard of reference to approximate true positive effects, and compute the fraction of those effects that was detected reliably using standard software packages at various smaller sample sizes. We found that with standard sample sizes this fraction was less than 25 percent. We conclude that inflated false negative rates are a major factor that undermine reproducibility. We introduce a new statistical inference algorithm based on a novel test statistic and show that it improves reproducibility without inflating false positive rates.
Load More