GZ
Guofeng Zhang
Author with expertise in Neural Interface Technology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
19
h-index:
74
/
i10-index:
372
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

A positively Tuned Voltage Indicator Reveals Electrical Correlates of Calcium Activity in the Brain

Stephen Evans et al.Oct 23, 2021
Abstract Neuronal spiking activity is routinely recorded using genetically encoded calcium indicators (GECIs), but calcium imaging is limited in temporal resolution and does not report subthreshold voltage changes. Genetically encoded voltage indicators (GEVIs) offer better temporal resolution and subthreshold sensitivity, but spike detection with fast GEVIs has required specialized imaging equipment. Here, we report the ASAP4 subfamily of genetically encoded voltage indicators (GEVIs) that brighten in response to membrane depolarization, inverting the fluorescence-voltage relationship of previous ASAP GEVIs. Two variants, ASAP4b and ASAP4e, feature 128% and 178% fluorescence increases over 100-mV of depolarization, respectively, facilitating spike detection in single trials in vivo with standard 1 and 2-photon imaging systems. Simultaneous voltage and calcium imaging confirms improved temporal resolution and spike discernment by ASAP4 GEVIs. Thus, positively tuned ASAP4 voltage indicators enable recording of neuronal spiking activity using similar equipment as calcium imaging, while providing higher temporal resolution. One Sentence Summary Upward ASAPs increase detection capability of GEVIs in vivo .
4

Imaging sensory transmission and neuronal plasticity in primary sensory neurons with genetically-encoded voltage indicator, ASAP4.4-Kv

Yan Zhang et al.May 23, 2021
Abstract Detection of somatosensory inputs requires conversion of external stimuli into electrical signals by activation of primary sensory neurons. The mechanisms by which heterogeneous primary sensory neurons encode different somatosensory inputs remains unclear. In vivo dorsal root ganglia (DRG) imaging using genetically-encoded Ca 2+ indicators (GECIs) is currently the best technique for this purpose by providing an unprecedented spatial and populational resolution. It permits the simultaneous imaging of >1800 neurons/DRG in live mice. However, this approach is not ideal given that Ca 2+ is a second messenger and has inherently slow response kinetics. In contrast, genetically-encoded voltage indicators (GEVIs) have the potential to track voltage changes in multiple neurons in real time but often lack the brightness and dynamic range required for in vivo use. Here, we used soma-targeted ASAP4.4-Kv, a novel GEVI, to dissect the temporal dynamics of noxious and non-noxious neuronal signals during mechanical, thermal, or chemical stimulation in DRG of live mice. ASAP4.4-Kv is sufficiently bright and fast enough to optically characterize individual neuron coding dynamics. Notably, using ASAP4.4-Kv, we uncovered cell-to-cell electrical synchronization between adjacent DRG neurons and robust dynamic transformations in sensory coding following tissue injury. Finally, we found that a combination of GEVI and GECI imaging empowered in vivo optical studies of sensory signal processing and integration mechanisms with optimal spatiotemporal analysis. Highlights In vivo ultra fast and sensitive dynamic voltage imaging of peripheral primary sensory neurons by a newly generated genetically-encoded voltage indicator. Identification of mechanical, thermal, or chemical stimuli-evoked voltage signals with superior temporal resolution. Single-cell detection of changes in sub- and suprathreshold voltage dynamics across different disease conditions. Combination of voltage (by ASAP4.4-Kv) and Ca 2+ (by Pirt-GCaMP3) signals to facilitate the understanding of signal processing and integration of primary sensory neurons, especially for noxious versus non-noxious sensation.
4
Citation5
0
Save
0

Direct and specific assessment of axonal injury and spinal cord microenvironments using diffusion correlation imaging

Dan Benjamini et al.May 5, 2020
Abstract We describe a practical two-dimensional (2D) diffusion MRI framework to deliver specificity and improve sensitivity to axonal injury in the spinal cord. This approach provides intravoxel distributions of correlations of water mobilities in orthogonal directions, revealing sub-voxel diffusion components. Here we use it to investigate water diffusivities along axial and radial orientations within spinal cord specimens with confirmed, tract-specific axonal injury. First, we show using transmission electron microscopy and immunohistochemistry that tract-specific axonal beading occurs following Wallerian degeneration in the cortico-spinal tract as direct sequelae to closed head injury. We demonstrate that although some voxel-averaged diffusion tensor imaging (DTI) metrics are sensitive to this axonal injury, they are non-specific, i.e., they do not reveal an underlying biophysical mechanism of injury. Then we employ 2D diffusion correlation imaging (DCI) to improve discrimination of different water microenvironments by measuring and mapping the joint water mobility distributions perpendicular and parallel to the spinal cord axis. We determine six distinct diffusion spectral components that differ according to their microscopic anisotropy and mobility. We show that at the injury site a highly anisotropic diffusion component completely disappears and instead becomes more isotropic. Based on these findings, an injury-specific MR image of the spinal cord was generated, and a radiological-pathological correlation with histological silver staining % area was performed. The resulting strong and significant correlation ( r = 0.70, p < 0.0001) indicates the high specificity with which DCI detects injury-induced tissue alterations. We predict that the ability to selectively image microstructural changes following axonal injury in the spinal cord can be useful in clinical and research applications by enabling specific detection and increased sensitivity to injury-induced microstructural alterations. These results also encourage us to translate DCI to higher spatial dimensions to enable assessment of traumatic axonal injury, and possibly other diseases and disorders in the brain.
0
Citation1
0
Save
0

Characterization of novel inhibition of indoleamine 2,3-dioxygenase by targeting its apo form.

Rodrigo Ortiz‐Meoz et al.May 17, 2018
Indoleamine-2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the rate-limiting step in the kynurenine pathway of tryptophan (TRP) metabolism. As an inflammation-induced immunoregulatory enzyme, pharmacological inhibition of IDO1 activity is currently being pursued as a potential therapeutic tool for the treatment of cancer and other disease states. As such, a detailed understanding of the mechanism of action of established and novel IDO1 inhibitors remains of great interest. Comparison of a newly-developed IDO1 inhibitor (GSK5628) to the existing best-in-class compound, epacadostat (Incyte), allows us to report on a novel inhibition mechanism for IDO1. Here, we demonstrate that GSK5628 inhibits IDO1 by competing with heme for binding to a heme-free conformation of the enzyme (apo-IDO1) while epacadostat coordinates its binding with the iron atom of the IDO1 heme cofactor. Comparison of these two compounds in cellular systems reveals a long-lasting inhibitory effect of GSK5628, undescribed for other known IDO1 inhibitors. Detailed characterization of this novel binding mechanism for IDO1 inhibition may help design superior inhibitors or may confer a unique competitive advantage over other IDO1 inhibitors vis-á-vis specificity and pharmacokinetic parameters.
0

Use of dual electron probes reveals role of ferritin in erythropoiesis

Maria Aronova et al.Dec 6, 2019
Much is known about the finely regulated process of mammalian erythropoiesis that occurs in the bone marrow, whereby erythropoietic stem cells undergo terminal differentiation accompanied by enormous morphological changes to generate highly functional specialized red blood cells. However, a crucial step in erythropoiesis, the labile iron pool and its transport to mitochondria for heme production, is not well understood[1][1]. We apply a dual 3D imaging and spectroscopic technique, based on scanned electron probes, to measure distributions of ferritin iron-storage protein in ex vivo human erythropoietic stem cells, and to determine how those distributions change during terminal differentiation. After seven days of differentiation, the cells display a highly specialized architecture of organelles with anchored clustering of mitochondria and massive accumulation of Fe3+ in loaded ferritin cores localized to lysosomal storage depots, providing an iron source for heme production. Macrophages are not present in our ex vivo cultures, so they cannot be the source of the ferritin[2][2]. We suggest that lysosomal iron depots are required by developing reticulocytes while terminally differentiating and continuing to produce heme and globin, which assemble and concentrate to fill the cytoplasm after much of the cellular machinery is expelled. [1]: #ref-1 [2]: #ref-2
0

The mechanisms of dynamin-actin interaction

Ruihui Zhang et al.Mar 25, 2019
Cell-cell fusion is an indispensable process in the conception, development and physiology of multicellular organisms. Here we demonstrate a direct and noncanonical role for dynamin, best known as a fission GTPase in endocytosis, in cell-cell fusion. Our genetic and cell biological analyses show that dynamin colocalizes within the F-actin-enriched podosome-like structures at the fusogenic synapse, which is required for generating invasive membrane protrusions and myoblast fusion in vivo, in an endocytosis-independent manner. Biochemical, negative stain EM and cryo-electron tomography (cryo-ET) analyses revealed that dynamin forms helices that directly bundles actin filaments by capturing multiple actin filaments at their outer rim via interactions with the proline-rich domain of dynamin. GTP hydrolysis by dynamin triggers disassembly of the dynamin helix, exposes the sides of the actin filaments, promotes dynamic Arp2/3-mediated branched actin polymerization, and generates a mechanically stiff actin network. Thus, dynamin functions as a unique actin-bundling protein that enhances mechanical force generation by the F-actin network in a GTPase-dependent manner. Our findings have universal implications for understanding dynamin-actin interactions in various cellular processes beyond cell-cell fusion.
0

Developmentally-orchestrated mitochondrial processes prime the selection against harmful mtDNA mutations

Zhe Chen et al.May 24, 2019
Abstract Although mitochondrial DNA (mtDNA) is prone to mutation and not all conventional DNA repair systems operate in mitochondria, deleterious mutations are exceedingly rare. How the transmission of detrimental mtDNA mutations is restricted through the maternal lineage is debated. Here, we use Drosophila to dissect the mechanisms of mtDNA selective inheritance and understand their molecular underpinnings. Our observations support a purifying selection at the organelle level based on a series of developmentally-orchestrated mitochondrial processes. We demonstrate that mitochondrial fission, together with the lack of mtDNA replication in early germarium, effectively segregates mtDNA into individual organelles. After mtDNA segregation, mtDNA transcription begins, which leads to the activation of respiration in each organelle. The expression of mtDNA-encoded genes allows the functional manifestation of different mitochondrial genotypes in heteroplasmic cells, and hence functions as a stress test for each individual genome and sets the stage for the replication competition. We also show that the Balbiani body has a minor role in mtDNA selective inheritance by supplying healthy mitochondria to the pole plasm. The two selection mechanisms may act synergistically to secure the transmission of functional mtDNA through Drosophila oogenesis.
0

Functional architecture of intracellular oscillations in hippocampal dendrites

Zhenrui Liao et al.Feb 12, 2024
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions and report an advancing gradient of dendritic theta phase along the basal-tuft axis, then describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Load More