HL
Heikki Lyytinen
Author with expertise in Development of Reading Skills and Dyslexia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
3,341
h-index:
68
/
i10-index:
177
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neural systems predicting long-term outcome in dyslexia

Fumiko Hoeft et al.Dec 20, 2010
Individuals with developmental dyslexia vary in their ability to improve reading skills, but the brain basis for improvement remains largely unknown. We performed a prospective, longitudinal study over 2.5 y in children with dyslexia ( n = 25) or without dyslexia ( n = 20) to discover whether initial behavioral or brain measures, including functional MRI (fMRI) and diffusion tensor imaging (DTI), can predict future long-term reading gains in dyslexia. No behavioral measure, including widely used and standardized reading and language tests, reliably predicted future reading gains in dyslexia. Greater right prefrontal activation during a reading task that demanded phonological awareness and right superior longitudinal fasciculus (including arcuate fasciculus) white-matter organization significantly predicted future reading gains in dyslexia. Multivariate pattern analysis (MVPA) of these two brain measures, using linear support vector machine (SVM) and cross-validation, predicted significantly above chance (72% accuracy) which particular child would or would not improve reading skills (behavioral measures were at chance). MVPA of whole-brain activation pattern during phonological processing predicted which children with dyslexia would improve reading skills 2.5 y later with >90% accuracy. These findings identify right prefrontal brain mechanisms that may be critical for reading improvement in dyslexia and that may differ from typical reading development. Brain measures that predict future behavioral outcomes (neuroprognosis) may be more accurate, in some cases, than available behavioral measures.
0
Paper
Citation454
0
Save
0

Brain sensitivity to print emerges when children learn letter–speech sound correspondences

Silvia Brem et al.Apr 15, 2010
The acquisition of reading skills is a major landmark process in a human's cognitive development. On the neural level, a new functional network develops during this time, as children typically learn to associate the well-known sounds of their spoken language with unfamiliar characters in alphabetic languages and finally access the meaning of written words, allowing for later reading. A critical component of the mature reading network located in the left occipito-temporal cortex, termed the “visual word-form system” (VWFS), exhibits print-sensitive activation in readers. When and how the sensitivity of the VWFS to print comes about remains an open question. In this study, we demonstrate the initiation of occipito-temporal cortex sensitivity to print using functional MRI (fMRI) ( n = 16) and event-related potentials (ERP) ( n = 32) in a controlled, longitudinal training study. Print sensitivity of fast (<250 ms) processes in posterior occipito-temporal brain regions accompanied basic associative learning of letter–speech sound correspondences in young (mean age 6.4 ± 0.08 y) nonreading kindergarten children, as shown by concordant ERP and fMRI results. The occipito-temporal print sensitivity thus is established during the earliest phase of reading acquisition in childhood, suggesting that a crucial part of the later reading network first adopts a role in mapping print and sound.
0
Citation413
0
Save
0

Corpus Callosum Morphology in Attention Deficit-Hyperactivity Disorder: Morphometric Analysis of MRI

George Hynd et al.Mar 1, 1991
Although behavioral evidence provides support for the notion that attention deficit-hyperactivity disorder (ADHD) is related to central nervous system dysfunction, there is little direct evidence to reveal which neurometabolic systems or brain structures are involved. Recent magnetic resonance imaging (MRI) studies suggest that, compared to nondisabled controls, ADHD children may have a smaller right frontal region. Morphometric analysis of MRI scans was used in this exploratory study to determine whether correlated regional variation might exist in the corpus callosum of children with ADHD. While all MRI scans were judged to be clinically normal, morphometric analysis revealed that, compared to nondisabled controls, ADHD children had a smaller corpus callosum, particularly in the region of the genu and splenium, and in the area just anterior to the splenium. Interhemispheric fibers in these regions interconnect the left and right frontal, occipital, parietal, and posterior temporal regions. These results suggest that subtle differences may exist in the brains of children with ADHD and that deviations in normal corticogenesis may underlie the behavioral manifestations of this disorder.
0

A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain

Mikko Taipale et al.Sep 3, 2003
Approximately 3–10% of people have specific difficulties in reading, despite adequate intelligence, education, and social environment. We report here the characterization of a gene, DYX1C1 near the DYX1 locus in chromosome 15q21, that is disrupted by a translocation t(2;15)(q11;q21) segregating coincidentally with dyslexia. Two sequence changes in DYX1C1 , one involving the translation initiation sequence and an Elk-1 transcription factor binding site (–3G → A) and a codon (1249G → T), introducing a premature stop codon and truncating the predicted protein by 4 aa, associate alone and in combination with dyslexia. DYX1C1 encodes a 420-aa protein with three tetratricopeptide repeat (TPR) domains, thought to be protein interaction modules, but otherwise with no homology to known proteins. The mouse Dyx2016 protein is 78% identical to the human protein, and the nonhuman primates differ at 0.5–1.4% of residues. DYX1C1 is expressed in several tissues, including the brain, and the protein resides in the nucleus. In human brain, DYX1C1 protein localizes to a fraction of cortical neurons and white matter glial cells. We conclude that DYX1C1 should be regarded as a candidate gene for developmental dyslexia. Detailed study of its function may open a path to understanding a complex process of development and maturation of the human brain.
0
Citation377
0
Save
97

Genome-wide association analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

Else Eising et al.Nov 4, 2021
Abstract The use of spoken and written language is a capacity that is unique to humans. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30-80%, depending on the trait. The relevant genetic architecture is complex, heterogeneous, and multifactorial, and yet to be investigated with well-powered studies. Here, we present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures: word reading, nonword reading, spelling, phoneme awareness, and nonword repetition, with total sample sizes ranging from 13,633 to 33,959 participants aged 5-26 years (12,411 to 27,180 for those with European ancestry, defined by principal component analyses). We identified a genome-wide significant association with word reading (rs11208009, p=1.098 × 10 −8 ) independent of known loci associated with intelligence or educational attainment. All five reading-/language-related traits had robust SNP-heritability estimates (0.13–0.26), and genetic correlations between them were modest to high. Using genomic structural equation modelling, we found evidence for a shared genetic factor explaining the majority of variation in word and nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence and educational attainment. A multivariate GWAS was performed to jointly analyse word and nonword reading, spelling, and phoneme awareness, maximizing power for follow-up investigation. Genetic correlation analysis of multivariate GWAS results with neuroimaging traits identified association with cortical surface area of the banks of the left superior temporal sulcus, a brain region with known links to processing of spoken and written language. Analysis of evolutionary annotations on the lineage that led to modern humans showed enriched heritability in regions depleted of Neanderthal variants. Together, these results provide new avenues for deciphering the biological underpinnings of these uniquely human traits.
97
Citation14
0
Save
0

Genome Wide Association Scan identifies new variants associated with a cognitive predictor of dyslexia.

Alessandro Gialluisi et al.May 2, 2018
Developmental dyslexia (DD) is one of the most prevalent learning disorders among children and is characterized by deficits in different cognitive skills, including reading, spelling, short term memory and others. To help unravel the genetic basis of these skills, we conducted a Genome Wide Association Study (GWAS), including nine cohorts of reading-impaired and typically developing children of European ancestry, recruited across different countries (N=2,562-3,468). We observed a genome-wide significant effect (p<1x10-8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2 within MIR924HG (micro-RNA 924 host gene; p = 4.73x10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; p = 2.25x10-8). RAN represents one of the best universal predictors of reading fluency across orthographies and linkage to RAN has been previously reported within CELF4 (18q12.2), a gene highly expressed in the fetal brain which is co-expressed with NKAIN3 and predicted to be a target of MIR924. These findings suggest new candidate DD susceptibility genes and provide insights into the genetics and neurobiology of dyslexia.