SS
Scott Shaffer
Author with expertise in Tuberculosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
1,751
h-index:
52
/
i10-index:
107
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High‐resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

Reka Haraszti et al.Jan 1, 2016
+9
F
H
R
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high‐resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow‐derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin‐binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types.
0

Succination inactivates gasdermin D and blocks pyroptosis

Fiachra Humphries et al.Aug 20, 2020
+14
S
C
F
Activated macrophages undergo a metabolic switch to aerobic glycolysis, accumulating Krebs' cycle intermediates that alter transcription of immune response genes. We extended these observations by defining fumarate as an inhibitor of pyroptotic cell death. We found that dimethyl fumarate (DMF) delivered to cells or endogenous fumarate reacts with gasdermin D (GSDMD) at critical cysteine residues to form S-(2-succinyl)-cysteine. GSDMD succination prevents its interaction with caspases, limiting its processing, oligomerization, and capacity to induce cell death. In mice, the administration of DMF protects against lipopolysaccharide shock and alleviates familial Mediterranean fever and experimental autoimmune encephalitis by targeting GSDMD. Collectively, these findings identify GSDMD as a target of fumarate and reveal a mechanism of action for fumarate-based therapeutics that include DMF, for the treatment of multiple sclerosis.
0

Transcription factor Foxp3 and its protein partners form a complex regulatory network

Dipayan Rudra et al.Aug 26, 2012
+7
A
P
D
The transcription factor Foxp3 is essential for the function of regulatory T cells. Rudensky and colleagues show Foxp3 participates in large protein complexes that regulate gene expression of many of these components in self-reinforcing networks. The transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (Treg cells). To gain insights into the molecular mechanisms of Foxp3-mediated gene expression, we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multiprotein complexes of 400–800 kDa or larger and identified 361 associated proteins, ∼30% of which were transcription related. Foxp3 directly regulated expression of a large proportion of the genes encoding its cofactors. Some transcription factor partners of Foxp3 facilitated its expression. Functional analysis of the cooperation of Foxp3 with one such partner, GATA-3, provided additional evidence for a network of transcriptional regulation afforded by Foxp3 and its associates to control distinct aspects of Treg cell biology.
0
Citation397
0
Save
0

Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity

Reka Haraszti et al.Sep 22, 2018
+12
M
R
R
Exosomes can deliver therapeutic RNAs to neurons. The composition and the safety profile of exosomes depend on the type of the exosome-producing cell. Mesenchymal stem cells are considered to be an attractive cell type for therapeutic exosome production. However, scalable methods to isolate and manufacture exosomes from mesenchymal stem cells are lacking, a limitation to the clinical translation of exosome technology. We evaluate mesenchymal stem cells from different sources and find that umbilical cord-derived mesenchymal stem cells produce the highest exosome yield. To optimize exosome production, we cultivate umbilical cord-derived mesenchymal stem cells in scalable microcarrier-based three-dimensional (3D) cultures. In combination with the conventional differential ultracentrifugation, 3D culture yields 20-fold more exosomes (3D-UC-exosomes) than two-dimensional cultures (2D-UC-exosomes). Tangential flow filtration (TFF) in combination with 3D mesenchymal stem cell cultures further improves the yield of exosomes (3D-TFF-exosomes) 7-fold over 3D-UC-exosomes. 3D-TFF-exosomes are seven times more potent in small interfering RNA (siRNA) transfer to neurons compared with 2D-UC-exosomes. Microcarrier-based 3D culture and TFF allow scalable production of biologically active exosomes from mesenchymal stem cells. These findings lift a major roadblock for the clinical utility of mesenchymal stem cell exosomes.
0
Citation363
0
Save
1

Compartmentalized Cell Envelope Biosynthesis in Mycobacterium tuberculosis

Júlia Puffal et al.Jan 8, 2022
+6
J
I
J
Abstract The intracellular membrane domain (IMD) is a metabolically active and laterally discrete membrane domain initially discovered in Mycobacterium smegmatis . The IMD correlates both temporally and spatially with the polar cell envelope elongation in M. smegmatis . Whether or not a similar membrane domain exists in pathogenic species remains unknown. Here we show that the IMD is a conserved membrane structure found in Mycobacterium tuberculosis . We used two independent approaches, density gradient fractionation of membrane domains and visualization of IMD-associated proteins through fluorescence microscopy, to determine the characteristics of the plasma membrane compartmentalization in M. tuberculosis . Proteomic analysis revealed that the IMD is enriched in metabolic enzymes that are involved in the synthesis of conserved cell envelope components such as peptidoglycan, arabinogalactan, and phosphatidylinositol mannosides. Using a fluorescent protein fusion of IMD-associated proteins, we demonstrated that this domain is concentrated in the polar region of the rod-shaped cells, where active cell envelope biosynthesis is taking place. Proteomic analysis further revealed the enrichment of enzymes involved in synthesis of phthiocerol dimycocerosates and phenolic glycolipids in the IMD. We validated the IMD association of two enzymes, α1,3-fucosyltransferase and fucosyl 4- O -methyltransferase, which are involved in the final maturation steps of phenolic glycolipid biosynthesis. Taken together, these data indicate that functional compartmentalization of membrane is an evolutionarily conserved feature found in both M. tuberculosis and M. smegmatis , and M. tuberculosis utilizes this membrane location for the synthesis of its surface- exposed lipid virulence factors. IMPORTANCE M. tuberculosis remains an important public health threat, with more than one million deaths every year. The pathogen’s ability to survive in the human host for decades highlights the importance of understanding how this bacterium regulates and coordinates its metabolism, cell envelope elongation, and growth. The IMD is a membrane structure that associates with the subpolar growth zone of actively growing mycobacteria, but its existence is only known in a non- pathogenic model, M. smegmatis . Here, we demonstrated the presence of the IMD in M. tuberculosis , making the IMD an evolutionarily conserved plasma membrane compartment in mycobacteria. Furthermore, our study revealed that the IMD is the factory for synthesizing phenolic glycolipids, virulence factors produced by slow-growing pathogenic species.
1
Citation7
0
Save
14

Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2

Aniuska Becerra‐Artiles et al.Dec 1, 2022
+4
K
P
A
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S 903-917 presented by DPA1*01:03/DPB1*04:01 and S 1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N 54-68 and HE 128-142 presented by DRB1*15:01 and HE 259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines.There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.
14
Citation4
0
Save
0

Bidirectional associations between perinatal allopregnanolone and depression severity with postpartum gray matter volume in adult women

Megan Hare et al.Jun 24, 2024
K
S
A
M
Abstract Background Perinatal depression (PND) is a debilitating condition affecting maternal well‐being and child development. Allopregnanolone (ALLO) is important to perinatal neuroplasticity, however its relationship with depression severity and postpartum structural brain volume is unknown. Method We examined perinatal temporal dynamics and bidirectional associations between ALLO and depression severity and the association between these variables and postpartum gray matter volume, using a random intercept cross‐lagged panel model. Results We identified a unidirectional predictive relationship between PND severity and ALLO concentration, suggesting greater depression severity early in the perinatal period may contribute to subsequent changes in ALLO concentration ( β = 0.26, p = 0.009), while variations in ALLO levels during the perinatal period influences the development and severity of depressive symptoms later in the postpartum period ( β = 0.38, p = 0.007). Antepartum depression severity (Visit 2, β = 0.35, p = 0.004), ALLO concentration (Visit 2, β = 0.37, p = 0.001), and postpartum depression severity (Visit 3, β = 0.39, p = 0.031), each predicted the right anterior cingulate volume. Antepartum ALLO concentration (Visit 2, β = 0.29, p = 0.001) predicted left suborbital sulcus volume. Antepartum depression severity (Visit 1, β = 0.39, p = 0.006 and Visit 2, β = 0.48, p < 0.001) predicted the right straight gyrus volume. Postpartum depression severity (Visit 3, β = 0.36, p = 0.001) predicted left middle‐posterior cingulate volume. Conclusion These results provide the first evidence of bidirectional associations between perinatal ALLO and depression severity with postpartum gray matter volume.
0
Citation1
0
Save
7

Chemical-genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy

Eun‐Ik Koh et al.Apr 9, 2021
+21
N
P
E
Abstract Current chemotherapy against Mycobacterium tuberculosis ( Mtb ), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug-drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilize conditional Mtb knockdown mutants of essential genes as an experimentally-tractable surrogate for drug treatment, and probe the relationship between Mtb carbon metabolism and chemical-genetic interactions (CGI). We examined the anti-tubercular drugs isoniazid, rifampicin and moxifloxacin, and found that CGI are differentially responsive to the metabolic state, defining both environment-independent and –dependent interactions. Specifically, growth on the in vivo -relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGI could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of novel chemical-genetic-environmental interactions that can be used to optimize drug-drug interactions as well as provide a framework for understanding in vitro correlates of in vivo efficacy. Significance Efforts to improve tuberculosis therapy include optimizing multi-drug regimens to take advantage of drug-drug synergies. However, the complex host environment has a profound effect on bacterial metabolic state and drug activity, making predictions of optimal drug combinations difficult. In this study, we leverage a newly developed library of conditional knockdown Mycobacterium tuberculosis mutants in which genetic depletion of essential genes mimics the effect of drug therapy. This tractable system allowed us to assess the effect of growth condition on predicted drug-drug interactions. We found that these interactions can be differentially sensitive to the metabolic state and select in vitro -defined interactions can be leveraged to accelerate bacterial killing during infection. These findings suggest new strategies for optimizing tuberculosis therapy.
7
Citation1
0
Save
0

C-BERST: Defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2

Xin Gao et al.Aug 2, 2017
+8
L
L
X
Mapping proteomic composition at distinct genomic loci and subnuclear landmarks in living cells has been a long-standing challenge. Here we report that dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging (C-BERST) allows the unbiased mapping of proteomes near defined genomic loci, as demonstrated for telomeres. C-BERST enables the high-throughput identification of proteins associated with specific sequences, facilitating annotation of these factors and their roles in nuclear and chromosome biology. Mapping proteomic composition at distinct genomic loci and subnuclear landmarks in living cells has been a long-standing challenge. Here we report that dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging (C-BERST) allows the rapid, unbiased mapping of proteomes near defined genomic loci, as demonstrated for telomeres and centromeres. By combining the spatially restricted enzymatic tagging enabled by APEX2 with programmable DNA targeting by dCas9, C-BERST has successfully identified nearly 50% of known telomere-associated factors and many known centromere-associated factors. We also identified and validated SLX4IP and RPA3 as telomeric factors, confirming C-BERST's utility as a discovery platform. C-BERST enables the rapid, high-throughput identification of proteins associated with specific sequences, facilitating annotation of these factors and their roles in nuclear and chromosome biology.
0

Resting-state functional connectivity, cortical GABA and neuroactive steroids in peripartum and peripartum depressed women: a functional magnetic imaging and resonance study

Kristina Deligiannidis et al.Sep 7, 2018
+10
C
A
K
Postpartum depression (PPD) is associated with abnormalities in resting-state functional connectivity (RSFC) but the underlying neurochemistry is unclear. We hypothesized that peripartum GABAergic neuroactive steroids (NAS) are related to cortical GABA concentrations and RSFC in PPD as compared to healthy comparison women (HCW). To test this, we measured RSFC with fMRI and GABA+/Creatine (Cr) concentrations with proton magnetic resonance spectroscopy (1H MRS) in the pregenual anterior cingulate (pgACC) and occipital cortices (OCC) and quantified peripartum plasma NAS. We examined between-group differences in RSFC and the relationship between cortical GABA+/Cr concentrations with RSFC. We investigated the relationship between NAS, RSFC and cortical GABA+/Cr concentrations. Within the default mode network (DMN) an area of the dorsomedial prefrontal cortex (DMPFC) had greater connectivity with the rest of the DMN in PPD (peak voxel: MNI coordinates (2, 58, 32), p=0.002) and was correlated to depression scores (peak HAM-D17 voxel: MNI coordinates (0, 60, 34), p=0.008). pgACC GABA+/Cr correlated positively with DMPFC RSFC in a region spanning the right anterior/posterior insula and right temporal pole (r=+0.661, p=0.000). OCC GABA+/Cr correlated positively with regions spanning both amygdalae (right amygdala: r=+0.522, p=0.000; left amygdala: r=+0.651, p=0.000) as well as superior parietal areas. Plasma allopregnanolone was higher in PPD (p=0.03) and positively correlated with intra DMPFC connectivity (r=+0.548, p=0.000) but not GABA+/Cr. These results provide initial evidence that PPD is associated with altered DMN connectivity; cortical GABA+/Cr concentrations are associated with postpartum RSFC and allopregnanolone is associated with postpartum intra-DMPFC connectivity.