YQ
Yi Qi
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(80% Open Access)
Cited by:
1,727
h-index:
35
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons

Yi Qi et al.Feb 15, 2011
The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.
0

Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion

Yi Qi et al.Jan 26, 2010
The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.
0

A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy

Yang Liu et al.Jan 1, 2015
Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity.In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT).We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales.We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice.The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS.In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake.We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect.In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS.This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.
0

A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data

Evan Calabrese et al.Jun 5, 2015
Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data.
10

HiDiver: A Suite of Methods to Merge Magnetic Resonance Histology, Light Sheet Microscopy, and Complete Brain Delineations

G. Johnson et al.Feb 10, 2022
ABSTRACT We have developed new imaging and computational workflows to produce accurately aligned multimodal 3D images of the mouse brain that exploit high resolution magnetic resonance histology (MRH) and light sheet microscopy (LSM) with fully rendered 3D reference delineations of brain structures. The suite of methods starts with the acquisition of geometrically accurate (in-skull) brain MRIs using multi-gradient echo (MGRE) and new diffusion tensor imaging (DTI) at an isotropic spatial resolution of 15 μm. Whole brain connectomes are generated using over 100 diffusion weighted images acquired with gradients at uniformly spaced angles. Track density images are generated at a super-resolution of 5 μm. Brains are dissected from the cranium, cleared with SHIELD, stained by immunohistochemistry, and imaged by LSM at 1.8 μm/pixel. LSM channels are registered into the reference MRH space along with the Allen Brain Atlas (ABA) Common Coordinate Framework version 3 (CCFv3). The result is a hi gh- d imensional i ntegrated v olum e with r egistration ( HiDiver ) that has a global alignment accuracy of 10–50 μm. HiDiver enables 3D quantitative and global analyses of cells, circuits, connectomes, and CNS regions of interest (ROIs). Throughput is sufficiently high that HiDiver is now being used in comprehensive quantitative studies of the impact of gene variants and aging on rodent brain cytoarchitecture.
4

A time-course study of actively stained mouse brains: DTI parameter and connectomic stability over one year

Jaclyn Xiao et al.Dec 2, 2020
ABSTRACT While the application of diffusion tensor imaging (DTI), tractography, and connectomics to fixed ex-vivo tissue is a common practice today, there have been limited studies examining the effects of fixation on brain microstructure over extended periods. This time-course study reports the changes of regional brain volumes and diffusion scalar parameters, such as fractional anisotropy across twelve representative brain regions as measures of brain structural stability. The scalar DTI parameters and regional volumes were highly variable over the first two weeks after fixation. The same parameters were stable over a two to eight-week window after fixation which means confounds from tissue stability over that scanning window are minimal. Quantitative connectomes were analyzed over the same time period with extension out to one year. While there is some change in the scalar metrics at one year after fixation, these changes are sufficiently small, particularly in white matter to support reproducible connectomes over a period ranging from two weeks to one year post fixation. These findings delineate a stable scanning period during which brain volumes, diffusion scalar metrics and connectomes are remarkably stable.
4
Citation1
0
Save
1

Resolution and b value dependent Structural Connectome in ex vivo Mouse Brain

Stephanie Crater et al.Jan 6, 2022
Abstract Diffusion magnetic resonance imaging has been widely used in both clinical and preclinical studies to characterize tissue microstructure and structural connectivity. The diffusion MRI protocol for the Human Connectome Project (HCP) has been developed and optimized to obtain high-quality, high-resolution diffusion MRI (dMRI) datasets. However, such efforts have not been fully explored in preclinical studies, especially for rodents. In this study, high quality dMRI datasets of mouse brains were acquired at 9.4T system from two vendors. In particular, we acquired a high-spatial resolution dMRI dataset (25 μm isotropic with 126 diffusion encoding directions), which we believe to be the highest spatial resolution yet obtained; and a high-angular resolution dMRI dataset (50 μm isotropic with 384 diffusion encoding directions), which we believe to be the highest angular resolution compared to the dMRI datasets at the microscopic resolution. We systematically investigated the effects of three important parameters that affect the final outcome of the connectome: b value (1000 s/mm 2 to 8000 s/mm 2 ), angular resolution (10 to 126), and spatial resolution (25 µm to 200 µm). The stability of tractography and connectome increase with the angular resolution, where more than 50 angles are necessary to achieve consistent results. The connectome and quantitative parameters derived from graph theory exhibit a linear relationship to the b value (R 2 > 0.99); a single-shell acquisition with b value of 3000 s/mm 2 shows comparable results to the multi-shell high angular resolution dataset. The dice coefficient decreases and both false positive rate and false negative rate gradually increase with coarser spatial resolution. Our study provides guidelines and foundations for exploration of tradeoffs among acquisition parameters for the structural connectome in ex vivo mouse brain.
Load More