SB
Sunniva Bøstrand
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
8
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Marked regional glial heterogeneity in the human white matter of the central nervous system

Luise Seeker et al.Mar 25, 2022
+12
S
N
L
ABSTRACT The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are commonly affected in neurodegenerative diseases. However, these often uniquely human diseases differentially affect white matter regions, at various ages and between males and females, and we hypothesised that this is secondary to physiological variation in white matter glia with region, age and sex. Using single nucleus RNA sequencing of healthy human post-mortem samples, we find marked glial heterogeneity with tissue region (primary motor cortex, cerebellum, cervical spinal cord), with tissue-specific cell populations of oligodendrocyte precursor cells and astrocytes, and a spinal cord-enriched oligodendrocyte type that appears human-specific. Spinal cord microglia but not astrocytes show a more activated phenotype compared to brain. These regional effects, with additional differentially expressed genes with age and sex in all glial lineages, help explain pathological patterns of disease – essential knowledge for therapeutic strategies.
1
Citation7
0
Save
25

Mapping the glial transcriptome in Huntington’s disease using snRNAseq: Selective disruption of glial signatures across brain regions

Sunniva Bøstrand et al.Sep 10, 2022
+9
L
W
S
ABSTRACT Huntington’s disease (HD) is a severely debilitating, autosomal dominant neurodegenerative disease with a fatal outcome. There is accumulating evidence of a prominent role of glia in the pathology of HD, and we investigated this by conducting single nuclear RNA sequencing (snRNAseq) of human post mortem brain in four differentially affected regions; caudate nucleus, frontal cortex, hippocampus and cerebellum. Across 127,205 nuclei from people with HD, and age/sex matched controls, we found heterogeneity of glia which is altered in HD. We describe prominent changes in the abundance of certain subtypes of astrocytes, microglia, oligodendrocyte precursor cells and oligodendrocytes between HD and control samples, and these differences are widespread across brain regions. Furthermore, we highlight two possible mechanisms that characterise the glial contribution to disease pathology. Firstly, we show that upregulation of molecular chaperones represents a cross-glial signature in HD, which likely reflects an adaptive response to the accumulation of mutant Huntingtin (mHTT). Secondly, we show an oligodendrocyte-specific upregulation of the calmodulin-dependent 3’,5’-cyclic nucleotide phosphodiesterase 1A ( PDE1A ) in HD brain compared to controls, which may cause dysfunction of key cellular functions due to the downregulation of the important second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Our results support the hypothesis that glia have an important role in the pathology of HD, and show that all types of glia are affected in the disease. As glia are more tractable to treat than neurons, our findings may be of therapeutic relevance.
25
Citation1
0
Save
1

The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic Hedgehog signalling

Leah Schembs et al.Jun 6, 2021
+7
A
S
L
SUMMARY Defects in primary cilia, cellular antennas that controls multiple intracellular signalling pathways, underlie several neurodevelopmental disorders, but how cilia control essential steps in human brain formation remains elusive. Here, we show that cilia are present on the apical surface of radial glial cells in human foetal forebrain. Interfering with cilia signalling in human organoids by mutating the INPP5E gene leads to the formation of ventral telencephalic cell types instead of cortical progenitors and neurons. INPP5E mutant organoids also showed increased SHH signalling and cyclopamine treatment partially rescued this ventralisation. In addition, ciliary expression of SMO was increased and the integrity of the transition zone was compromised. Overall, these findings establish the importance of primary cilia for dorsal/ventral patterning in human corticogenesis, indicate a tissue specific role of INPP5E as a negative regulator of SHH signalling and have implications for the emerging roles of cilia in the pathogenesis of neurodevelopmental disorders.