RP
Robert Prevedel
Author with expertise in Fluorescence Microscopy Techniques
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(75% Open Access)
Cited by:
2,129
h-index:
31
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy

Ji Qi et al.Jul 30, 2018
Currently, a serious problem obstructing the large-scale clinical applications of fluorescence technique is the shallow penetration depth. Two-photon fluorescence microscopic imaging with excitation in the longer-wavelength near-infrared (NIR) region (>1100 nm) and emission in the NIR-I region (650–950 nm) is a good choice to realize deep-tissue and high-resolution imaging. Here, we report ultradeep two-photon fluorescence bioimaging with 1300 nm NIR-II excitation and NIR-I emission (peak ∼810 nm) based on a NIR aggregation-induced emission luminogen (AIEgen). The crab-shaped AIEgen possesses a planar core structure and several twisting phenyl/naphthyl rotators, affording both high fluorescence quantum yield and efficient two-photon activity. The organic AIE dots show high stability, good biocompatibility, and a large two-photon absorption cross section of 1.22 × 103 GM. Under 1300 nm NIR-II excitation, in vivo two-photon fluorescence microscopic imaging helps to reconstruct the 3D vasculature with a high spatial resolution of sub-3.5 μm beyond the white matter (>840 μm) and even to the hippocampus (>960 μm) and visualize small vessels of ∼5 μm as deep as 1065 μm in mouse brain, which is among the largest penetration depths and best spatial resolution of in vivo two-photon imaging. Rational comparison with the AIE dots manifests that two-photon imaging outperforms the one-photon mode for high-resolution deep imaging. This work will inspire more sight and insight into the development of efficient NIR fluorophores for deep-tissue biomedical imaging.
82

Ethology of morphogenesis reveals the design principles of cnidarian size and shape development

Anniek Stokkermans et al.Aug 19, 2021
Summary During development, organisms interact with their natural habitats while undergoing morphological changes, yet it remains unclear whether the interplay between developing systems and their environments impacts animal morphogenesis. Here, we use the cnidarian Nematostella vectensis as a developmental model to uncover a mechanistic link between organism size, shape and behavior. Using quantitative live imaging, including extensive behavioral profiling, combined with molecular and biophysical experiments, we demonstrate that the muscular hydraulic machinery that controls body movement directly drives larva-polyp morphogenesis. Unexpectedly, size and shape development are differentially controlled by antagonistic muscles. A simple theoretical model shows how a combination of slow-priming and fast-pumping pressures generated by muscular hydraulics acts as a global mechanical regulator that coordinates tissue remodeling. Altogether, our findings illuminate how dynamic behavioral modes in the environment can be harnessed to drive morphogenetic trajectories, establishing ethology as a critical component of organismal morphogenesis – termed ethology of morphogenesis.
82
Citation5
0
Save
Load More