SR
Srinivas Rachakonda
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,935
h-index:
22
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Baseline for the Multivariate Comparison of Resting-State Networks

Elena Allen et al.Jan 1, 2011
+30
E
E
E
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease.
0

Comparison of multi‐subject ICA methods for analysis of fMRI data

Erik Erhardt et al.Dec 15, 2010
+3
E
S
E
Abstract Spatial independent component analysis (ICA) applied to functional magnetic resonance imaging (fMRI) data identifies functionally connected networks by estimating spatially independent patterns from their linearly mixed fMRI signals. Several multi‐subject ICA approaches estimating subject‐specific time courses (TCs) and spatial maps (SMs) have been developed, however, there has not yet been a full comparison of the implications of their use. Here, we provide extensive comparisons of four multi‐subject ICA approaches in combination with data reduction methods for simulated and fMRI task data. For multi‐subject ICA, the data first undergo reduction at the subject and group levels using principal component analysis (PCA). Comparisons of subject‐specific, spatial concatenation, and group data mean subject‐level reduction strategies using PCA and probabilistic PCA (PPCA) show that computationally intensive PPCA is equivalent to PCA, and that subject‐specific and group data mean subject‐level PCA are preferred because of well‐estimated TCs and SMs. Second, aggregate independent components are estimated using either noise‐free ICA or probabilistic ICA (PICA). Third, subject‐specific SMs and TCs are estimated using back‐reconstruction. We compare several direct group ICA (GICA) back‐reconstruction approaches (GICA1‐GICA3) and an indirect back‐reconstruction approach, spatio‐temporal regression (STR, or dual regression). Results show the earlier group ICA (GICA1) approximates STR, however STR has contradictory assumptions and may show mixed‐component artifacts in estimated SMs. Our evidence‐based recommendation is to use GICA3, introduced here, with subject‐specific PCA and noise‐free ICA, providing the most robust and accurate estimated SMs and TCs in addition to offering an intuitive interpretation. Hum Brain Mapp, 2011. © 2010 Wiley Periodicals, Inc.
13

Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets

Armin Iraji et al.Sep 5, 2022
+34
C
K
A
Abstract Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN’s subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness.
4

Multi-Spatial Scale Dynamic Interactions between Functional Sources Reveal Sex-Specific Changes in Schizophrenia

Armin Iraji et al.Jan 5, 2021
+13
Z
A
A
Abstract We introduce an extension of independent component analysis (ICA), called multiscale ICA (msICA), and design an approach to capture dynamic functional source interactions within and between multiple spatial scales. msICA estimates functional sources at multiple spatial scales without imposing direct constraints on the size of functional sources, overcomes the limitation of using fixed anatomical locations, and eliminates the need for model-order selection in ICA analysis. We leveraged this approach to study sex-specific and -common connectivity patterns in schizophrenia. Results show dynamic reconfiguration and interaction within and between multi-spatial scales. Sex-specific differences occur (1) within the subcortical domain, (2) between the somatomotor and cerebellum domains, and (3) between the temporal domain and several others, including the subcortical, visual, and default mode domains. Most of the sex-specific differences belong to between-spatial scale functional interactions and are associated with a dynamic state with strong functional interactions between the visual, somatomotor, and temporal domains and their anticorrelation patterns with the rest of the brain. We observed significant correlations between multi-spatial scale functional interactions and symptom scores, highlighting the importance of multiscale analyses to identify potential biomarkers for schizophrenia. As such, we recommend such analyses as an important option for future functional connectivity studies.
4
Paper
Citation10
0
Save
0

Ultra-high-order ICA: fine overlapping functional parcellations and spatiotemporal reconfiguration

Armin Iraji et al.Mar 12, 2020
+4
T
Z
A
Our recent findings show that functional organizations evolve spatially over time, highlighting the importance of considering within-subject spatial variations and dynamic functional parcellations in brain functional analyses. Meanwhile, a considerable level of multi-functionality suggests the need for overlapping brain parcellations. In this work, we used ultra-high-order ICA to identify fine overlapping functional dynamic parcellations of the brain. The preliminary result of this work was presented at the organization for human brain mapping workshop (OHBM 2019).
0

PulseVision: A Real-Time Heart-Rate Mornitoring System Using Computer Vision and Signal Processing Techniques

Srinidhi Pudipeddi et al.Aug 23, 2024
T
S
S
In the dynamic landscape of technology and healthcare, the quest for real-time physiological monitoring solutions has sparked innovation. This study proposes a method that leverages computer vision and signal processing to create a cutting-edge system for monitoring heart rates in real-time. The script employs OpenCV for face detection and incorporates custom modules for real-time plotting, offering a comprehensive and instantaneous assessment of cardiovascular activity. The Python script unveils a real-time heart rate monitoring system that harnesses the synergy of computer vision and signal processing. Utilizing OpenCV for precise face detection and custom modules for dynamic plotting, the script processes video frames from a webcam to analyze the facial region for heart rate monitoring. Employing color magnification, Gaussian pyramid construction, and bandpass filtering, the script extracts the pulse signal's frequency content. Heart rate, calculated in beats per minute (BPM), provides a valuable metric for physiological assessment. This system, with its innovative approach, has the potential to redefine real- time physiological monitoring applications, offering insights for healthcare and personal well-being. Key Words: Heart Rate Monitoring, Computer Vision, Signal Processing, OpenCV, Real-time Plotting, Face Detection, Frequency Analysis, Pulse Signal, Gaussian Pyramid, Bandpass Filtering.
0

Multimodal Neural Correlates Of Cognitive Control In The Human Connectome Project

Dov Lerman-Sinkoff et al.Apr 4, 2017
+3
S
J
D
Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA+jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions hypothesized to be modulated by cognitive control signaling, such as visual cortex. Taken together, these results illustrate the potential utility of multi-modal analyses in identifying the neural correlates of cognitive control across different indicators of brain structure and function.