GP
Godfrey Pearlson
Author with expertise in Analysis of Brain Functional Connectivity Networks
Institute for Community Living, Yale University, Neuropsychiatric Research Institute
+ 11 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
32
(69% Open Access)
Cited by:
40
h-index:
137
/
i10-index:
632
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
39

Regression dynamic causal modeling for resting-state fMRI

Stefan Frässle et al.Oct 24, 2023
+8
J
S
S
A bstract “Resting-state” functional magnetic resonance imaging (rs-fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks. Here, we show that a method recently developed for task-fMRI – regression dynamic causal modeling (rDCM) – extends to rs-fMRI and offers both directional estimates and scalability to whole-brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal-to-noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs-fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole-brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics.
39
Citation8
0
Save
4

Multi-model Order ICA: A Data-driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales

Meng Xing et al.Oct 24, 2023
+13
Z
A
M
Abstract Background While functional connectivity is widely studied, there has been little work studying functional connectivity at different spatial scales. Likewise, the relationship of functional connectivity between spatial scales is unknown. Methods We proposed an independent component analysis (ICA) - based approach to capture information at multiple model orders (component numbers) and to evaluate functional network connectivity (FNC) both within and between model orders. We evaluated the approach by studying group differences in the context of a study of resting fMRI (rsfMRI) data collected from schizophrenia (SZ) individuals and healthy controls (HC). The predictive ability of FNC at multiple spatial scales was assessed using support vector machine (SVM)-based classification. Results In addition to consistent predictive patterns at both multiple-model orders and single model orders, unique predictive information was seen at multiple-model orders and in the interaction between model orders. We observed that the FNC between model order 25 and 50 maintained the highest predictive information between HC and SZ. Results highlighted the predictive ability of the somatomotor and visual domains both within and between model orders compared to other functional domains. Also, subcortical-somatomotor, temporal-somatomotor, and temporal-subcortical FNCs had relatively high weights in predicting SZ. Conclusions In sum, multi-model order ICA provides a more comprehensive way to study FNC, produces meaningful and interesting results which are applicable to future studies. We shared the spatial templates from this work at different model orders to provide a reference for the community, which can be leveraged in regression-based or fully automated (spatially constrained) ICA approaches. Impact Statement Multi-model order ICA provides a comprehensive way to study brain functional network connectivity within and between multiple spatial scales, highlighting findings that would have been ignored in single model order analysis. This work expands upon and adds to the relatively new literature on resting fMRI-based classification and prediction. Results highlighted the differentiating power of specific intrinsic connectivity networks on classifying brain disorders of schizophrenia patients and healthy participants, at different spatial scales. The spatial templates from this work provide a reference for the community, which can be leveraged in regression-based or fully automated ICA approaches.
0

Higher genetic risk of schizophrenia is associated with lower cognitive performance in healthy individuals

Rebecca Shafee et al.May 7, 2020
+13
J
P
R
Abstract Psychotic disorders including schizophrenia are commonly accompanied by cognitive deficits. Recent studies have reported negative genetic correlations between schizophrenia and indicators of cognitive ability such as general intelligence and processing speed. Here we compare the effect of the genetic risk of schizophrenia (PRS SCZ ) on measures that differ in their relationships with psychosis onset: a measure of current cognitive abilities (the Brief Assessment of Cognition in Schizophrenia, BACS) that is greatly reduced in psychosis patients; a measure of premorbid intelligence that is minimally affected by psychosis (the Wide-Range Achievement Test, WRAT); and educational attainment (EY), which covaries with both BACS and WRAT. Using genome-wide SNP data from 314 psychotic and 423 healthy research participants in the Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) Consortium, we investigated the association of PRS SCZ with BACS, WRAT and EY. Among apparently healthy individuals, greater genetic risk for schizophrenia (PRS SCZ ) was associated with lower BACS scores (r = −0.19, p = 1 × 10 −4 at P T = 1 × 10 −4 ) but did not associate with WRAT or EY, suggesting that these areas of cognition vary in their etiologic relationships with schizophrenia. Among individuals with psychosis, PRS SCZ did not associate with variation in cognitive performance. These findings suggest that the same cognitive abilities that are disrupted in psychotic disorders are also associated with schizophrenia genetic risk in the general population. Specific cognitive phenotypes, independent of education or general intelligence, could be more deeply studied for insight into the specific processes affected by the genetic influences on psychosis. Significance Psychotic disorders such as schizophrenia often involve profound cognitive deficits, the genetic underpinnings of which remain to be elucidated. Poor educational performance early in life is a well-known risk factor for future psychotic illness, potentially reflecting either shared genetic influences or other risk factors that are epidemiologically correlated. Here we show that, in apparently healthy individuals, common genetic risk factors for schizophrenia associate with lower performance in areas of cognition that are impaired in psychotic disorders but do not associate independently with educational attainment or more general measures of intelligence. These results suggest that specific cognitive phenotypes – independent of education or general intelligence – could be more deeply studied for insight into the processes affected by the genetic influences on psychosis.
0

Addressing Inaccurate Nosology in Mental Health: A Multi Label Data Cleansing Approach for Detecting Label Noise from Structural Magnetic Resonance Imaging Data in Mood and Psychosis Disorders

Hooman Rokham et al.May 30, 2024
+3
A
G
H
ABSTRACT Background Mental health diagnostic approaches are seeking to identify biological markers to work alongside advanced machine learning approaches. It is difficult to identify a biological marker of disease when the traditional diagnostic labels themselves are not necessarily valid. Methods We worked with T1 structural magnetic resonance imaging data collected from individuals with mood and psychosis disorders from over 1400 individuals comprising healthy controls, psychosis patients and their unaffected first-degree relatives including 176 bipolar probands, 134 schizoaffective probands, 240 schizophrenia proband, 581 patients relatives and 362 controls. We assumed there might be noise in the diagnostic labeling process. We detected label noise by classifying the data multiple times using a support vector machine classifier, and then we flagged those individuals in which all classifiers unanimously mislabeled those subjects. Next, we assigned a new diagnostic label to these individuals, based on the biological data (MRI), using iterative data cleansing approach. Results Simulation results showed our method was highly accurate in identifying label noise. Both diagnostic and Biotype categories showed about 65% and 63% respectively of noisy labels with the largest amount of relabeling occurring between the healthy control and bipolar and schizophrenia disorder individuals as well as in the unaffected close relatives. The extraction of imaging features highlighted regional brain changes associated with each group. Conclusions This approach represents an initial step towards developing strategies that need not assume existing mental health diagnostic categories are always valid, but rather allows us to leverage this information while also acknowledging that there are misassignments.
0
Paper
Citation5
0
Save
5

Nonlinear Functional Network Connectivity in Resting Fmri Data

Sara Motlaghian et al.Oct 24, 2023
+10
J
A
S
ABSTRACT In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique using normalized mutual information (MI), that calculates the nonlinear correlation between different brain regions. We demonstrate our proposed approach using simulated data, then apply it to a dataset previously studied in (Damaraju et al., 2014). This resting-state fMRI data included 151 schizophrenia patients and 163 age- and gender-matched healthy controls. We first decomposed these data using group independent component analysis (ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear approach. Group analysis identified significant differences in nonlinear dependencies between schizophrenia patients and healthy controls particularly in visual cortex, with controls showing more nonlinearity in most cases. Certain domains, including cognitive control, and default mode, appeared much less nonlinear, whereas links between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a complementary and potentially important tool for studying brain function by exposing relevant variation that is typically ignored. Further, we propose a method that captures both linear and nonlinear effects in a ‘boosted’ approach. This method increases the sensitivity to group differences in comparison to the standard linear approach, at the cost of being unable to separate linear and nonlinear effects.
3

Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from fMRI data

Xiaohong Meng et al.Oct 24, 2023
+13
Z
A
X
Abstract Brain functional networks identified from resting fMRI data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale. In this work, we present an approach using scICA to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales (ICA model orders), which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N>1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into spatially constrained ICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. We also used the msFNC features as input to a classification model in cross-validated hold-out data and also in an independent test data. Visualization of predictive features was performed by evaluating their feature weights. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development.
1

Alterations in grey matter structure linked to frequency-specific cortico-subcortical connectivity in schizophrenia via multimodal data fusion

Marlena Duda et al.Oct 24, 2023
+10
A
A
M
Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies comparing individuals with SZ to healthy controls (HC) have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. The initial implementation used a set of filters spanning the full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between grey matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.
1
Citation2
0
Save
0

Towards cascading genetic risk in Alzheimer’s disease

André Altmann et al.Sep 6, 2024
+893
L
N
A
Abstract Alzheimer’s disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (−). Over the past decades, genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset Alzheimer’s disease. Here, we investigate whether genetic risk for Alzheimer’s disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer’s Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A−T− status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T− status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T− status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A−T− to A+T−, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70–4.89; P &lt; 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84–1.42; P = 0.53). Conversely, for the transition from A+T− to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05–2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27–2.36; P &lt; 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05–6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87–3.49; P = 0.12). The genetic risk for late-onset Alzheimer’s disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer’s disease, in addition to opening therapeutic windows for targeted interventions.
0
Paper
Citation2
0
Save
0

4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia

Krishna Pusuluri et al.Sep 12, 2024
+5
R
Z
K
Abstract Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain networks in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal changes in the volumes of these 4D networks. Our results show significant volumetric coupling (i.e., synchronized shrinkage and growth) between networks during the scan, that we refer to as dynamic spatial network connectivity (dSNC). We find that several features of such dynamic spatial brain networks are associated with cognition, with higher dynamic variability in these networks and higher volumetric coupling between network pairs positively associated with cognitive performance. We show that these networks are modulated differently in individuals with schizophrenia versus typical controls, resulting in network growth or shrinkage, as well as altered focus of activity within a network. Schizophrenia also shows lower spatial dynamical variability in several networks, and lower volumetric coupling between pairs of networks, thus upholding the role of dynamic spatial brain networks in cognitive impairment seen in schizophrenia. Our data show evidence for the importance of studying the typically overlooked voxel‐wise changes within and between brain networks.
0

Association between the oral microbiome and brain resting state connectivity in schizophrenia

Dongdong Lin et al.May 29, 2024
+6
J
Z
D
Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N=213 SZ and healthy control (HC) subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p= 6×10 -3 ; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H 2 S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8% of brain functional network connectivity from each component also showed significant differences between SZ and HC with strong performance in classifying SZ from HC, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.
0
Citation1
0
Save
Load More