CZ
Chuanjun Zhuo
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
350
h-index:
38
/
i10-index:
120
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan

Raymond Pomponio et al.Dec 9, 2019
+27
M
G
R
As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,477 structural brain MRI scans from participants without a known neurological or psychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive age trends of brain structure through the lifespan (3–96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this reference of brain development and aging, and to examine deviations from ranges, potentially related to disease.
13

Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets

Armin Iraji et al.Sep 5, 2022
+34
C
K
A
Abstract Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN’s subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness.
0

Harmonization of large multi-site imaging datasets: Application to 10,232 MRIs for the analysis of imaging patterns of structural brain change throughout the lifespan

Raymond Pomponio et al.Sep 26, 2019
+28
M
G
R
Abstract As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,232 structural brain MRI scans from participants without known neuropsychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive normative age trends of brain structure through the lifespan (3 to 96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this normative reference of brain development and aging, and to examine deviations from normative ranges, potentially related to disease.
0

Structural brain architectures match intrinsic functional networks and vary across domains: A study from 15000+ individuals

Na Luo et al.Dec 19, 2019
+13
J
J
N
Brain structural networks have been shown to consistently organize in functionally meaningful architectures covering the entire brain. However, to what extent brain structural architectures match the intrinsic functional networks in different functional domains remains under explored. In this study, based on independent component analysis, we revealed 45 pairs of structural-functional (S-F) component maps, distributing across 9 functional domains, in both a discovery cohort (n=6005) and a replication cohort (UK Biobank, n=9214), providing a well-match multimodal spatial map template for public use. Further network module analysis suggested that unimodal cortical areas (e.g. somatomotor and visual networks) indicate higher S-F coherence, while heteromodal association cortices, especially the frontoparietal network (FPN), exhibit more S-F divergence. Collectively, these results suggest that the expanding and maturing brain association cortex demonstrates a higher degree of change compared to unimodal cortex, which may lead to higher inter-individual variability and lower S-F coherence.
6

Multi-scale semi-supervised clustering of brain images: deriving disease subtypes

Junhao Wen et al.Apr 20, 2021
+28
D
R
J
Abstract Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional machine learning methods is that they typically model, learn and infer from data using a basis of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein we propose a novel method, “Multi-scAle heteroGeneity analysIs and Clustering” (MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to understand the conditions under which the clustering model can estimate true heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N=4403). We then applied MAGIC to imaging data from Alzheimer’s disease (ADNI, N =1728) and schizophrenia (PHENOM, N =1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed or should be taken with caution. The code of the proposed method is publicly available at https://github.com/anbai106/MAGIC . Highlights We propose a novel multi-scale semi-supervised clustering method, termed MAGIC, to disentangle the heterogeneity of brain diseases. We perform extensive semi-simulated experiments on large control samples (UK Biobank, N =4403) to precisely quantify performance under various conditions, including varying degrees of brain atrophy, different levels of heterogeneity, overlapping disease subtypes, class imbalance, and varying sample sizes. We apply MAGIC to MCI and Alzheimer’s disease (ADNI, N =1728) and schizophrenia (PHENOM, N =1166) patients to dissect their neuroanatomical heterogeneity, providing guidance regarding the use of the semi-simulated experiments to validate the subtypes found in actual clinical applications. Graphical abstract