JS
Joshua Shimony
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(86% Open Access)
Cited by:
5,709
h-index:
63
/
i10-index:
171
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tracking neuronal fiber pathways in the living human brain

Thomas Conturo et al.Aug 31, 1999
+6
T
N
T
Functional imaging with positron emission tomography and functional MRI has revolutionized studies of the human brain. Understanding the organization of brain systems, especially those used for cognition, remains limited, however, because no methods currently exist for noninvasive tracking of neuronal connections between functional regions [Crick, F. & Jones, E. (1993) Nature (London) 361, 109–110]. Detailed connectivities have been studied in animals through invasive tracer techniques, but these invasive studies cannot be done in humans, and animal results cannot always be extrapolated to human systems. We have developed noninvasive neuronal fiber tracking for use in living humans, utilizing the unique ability of MRI to characterize water diffusion. We reconstructed fiber trajectories throughout the brain by tracking the direction of fastest diffusion (the fiber direction) from a grid of seed points, and then selected tracks that join anatomically or functionally (functional MRI) defined regions. We demonstrate diffusion tracking of fiber bundles in a variety of white matter classes with examples in the corpus callosum, geniculo-calcarine, and subcortical association pathways. Tracks covered long distances, navigated through divergences and tight curves, and manifested topological separations in the geniculo-calcarine tract consistent with tracer studies in animals and retinotopy studies in humans. Additionally, previously undescribed topologies were revealed in the other pathways. This approach enhances the power of modern imaging by enabling study of fiber connections among anatomically and functionally defined brain regions in individual human subjects.
0

Precision Functional Mapping of Individual Human Brains

Evan Gordon et al.Jul 27, 2017
+17
A
T
E

Summary

 Human functional MRI (fMRI) research primarily focuses on analyzing data averaged across groups, which limits the detail, specificity, and clinical utility of fMRI resting-state functional connectivity (RSFC) and task-activation maps. To push our understanding of functional brain organization to the level of individual humans, we assembled a novel MRI dataset containing 5 hr of RSFC data, 6 hr of task fMRI, multiple structural MRIs, and neuropsychological tests from each of ten adults. Using these data, we generated ten high-fidelity, individual-specific functional connectomes. This individual-connectome approach revealed several new types of spatial and organizational variability in brain networks, including unique network features and topologies that corresponded with structural and task-derived brain features. We are releasing this highly sampled, individual-focused dataset as a resource for neuroscientists, and we propose precision individual connectomics as a model for future work examining the organization of healthy and diseased individual human brains.
0

Longitudinal Analysis of Neural Network Development in Preterm Infants

Christopher Smyser et al.Mar 17, 2010
+4
J
T
C
Application of resting state functional connectivity magnetic resonance imaging (fcMRI) to the study of prematurely born infants enables assessment of the earliest forms of cerebral connectivity and characterization of its early development in the human brain. We obtained 90 longitudinal fcMRI data sets from a cohort of preterm infants aged from 26 weeks postmenstrual age (PMA) through term equivalent age at PMA-specific time points. Utilizing seed-based correlation analysis, we identified resting state networks involving varied cortical regions, the thalamus, and cerebellum. Identified networks demonstrated a regionally variable age-specific pattern of development, with more mature forms consisting of localized interhemispheric connections between homotopic counterparts. Anatomical distance was found to play a critical role in the rate of connection development. Prominent differences were noted between networks identified in term control versus premature infants at term equivalent, including in the thalamocortical connections critical for neurodevelopment. Putative precursors of the default mode network were detected in term control infants but were not identified in preterm infants, including those at term equivalent. Identified patterns of network maturation reflect the intricate relationship of structural and functional processes present throughout this important developmental period and are consistent with prior investigations of neurodevelopment in this population.
0

Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

Christine Donald et al.Jun 1, 2011
+9
D
M
C
Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered.
0

Normal Brain Maturation during Childhood: Developmental Trends Characterized with Diffusion-Tensor MR Imaging

Pratik Mukherjee et al.Nov 1, 2001
+4
J
J
P
PURPOSE: To characterize the maturational changes in water diffusion within central gray matter nuclei and central white matter pathways of the human brain by using diffusion-tensor magnetic resonance (MR) imaging. MATERIALS AND METHODS: Retrospective analysis of normal MR examination findings in 153 subjects (age range, 1 day to 11 years) referred for clinical neuroimaging was performed. All studies included diffusion tensor-encoded echo-planar MR imaging. Isotropic diffusion coefficient (D̄) and diffusion anisotropy (Aσ) were measured in the corpus callosum, internal capsule, caudate nucleus, lentiform nucleus, and thalamus. RESULTS: D̄ exhibited biexponential decay with age in gray and white matter regions, except for monoexponential decay in the genu of the corpus callosum. There was a steep nonlinear increase of Aσ in white matter tracts that paralleled the time course of the decline in D̄. In basal ganglia, only a small linear increase in Aσ was observed in patients. Aσ changes in the thalamus were intermediate between basal ganglia and white matter structures. CONCLUSION: Changes in magnitude and anisotropy of water diffusion follow stereotypical time courses during brain development that can be empirically described with multiexponential regression models, which suggests that quantitative scalar parameters derived from diffusion-tensor MR imaging may provide clinically useful developmental milestones for brain maturity. Supplemental material: radiology.rsnajnls.org/cgi/content/full/2212001702/DC1.
0

Intrinsic Functional Relations Between Human Cerebral Cortex and Thalamus

Dongyang Zhang et al.Aug 14, 2008
+3
M
A
D
The brain is active even in the absence of explicit stimuli or overt responses. This activity is highly correlated within specific networks of the cerebral cortex when assessed with resting-state functional magnetic resonance imaging (fMRI) blood oxygen level–dependent (BOLD) imaging. The role of the thalamus in this intrinsic activity is unknown despite its critical role in the function of the cerebral cortex. Here we mapped correlations in resting-state activity between the human thalamus and the cerebral cortex in adult humans using fMRI BOLD imaging. Based on this functional measure of intrinsic brain activity we partitioned the thalamus into nuclear groups that correspond well with postmortem human histology and connectional anatomy inferred from nonhuman primates. This structure/function correspondence in resting-state activity was strongest between each cerebral hemisphere and its ipsilateral thalamus. However, each hemisphere was also strongly correlated with the contralateral thalamus, a pattern that is not attributable to known thalamocortical monosynaptic connections. These results extend our understanding of the intrinsic network organization of the human brain to the thalamus and highlight the potential of resting-state fMRI BOLD imaging to elucidate thalamocortical relationships.
0

Noninvasive Functional and Structural Connectivity Mapping of the Human Thalamocortical System

Dongyang Zhang et al.Sep 3, 2009
+2
J
A
D
Relating structural connectivity with functional activity is fundamentally important to understanding the brain's physiology. The thalamocortical system serves as a good model system for exploring structure/function relationships because of its well-documented anatomical connectivity. Here we performed functional and structural magnetic resonance mapping of the human thalamocortical system using intrinsic brain activity and diffusion-weighted imaging. The accuracy of these imaging techniques is tested by comparison with human histology registered to common anatomical space and connectional anatomy derived from nonhuman primates. In general, there is good overall concordance among structural, functional, and histological results which suggests that a simple model of direct anatomical connectivity between the cerebral cortex and the thalamus is capable of explaining much of the observed correlations in neuronal activity. However, important differences between structural and functional mapping results are also manifest which suggests a more complex interpretation and emphasizes the unique contributions from structural and functional mapping.
0

Loss of Resting Interhemispheric Functional Connectivity after Complete Section of the Corpus Callosum

James Johnston et al.Jun 18, 2008
+6
M
S
J
Slow (<0.1 Hz), spontaneous fluctuations in the functional magnetic resonance imaging blood oxygen level-dependent (BOLD) signal have been shown to exhibit phase coherence within functionally related areas of the brain. Surprisingly, this phenomenon appears to transcend levels of consciousness. The genesis of coherent BOLD fluctuations remains to be fully explained. We present a resting state functional connectivity study of a 6-year-old child with a radiologically normal brain imaged both before and after complete section of the corpus callosum for the treatment of intractable epilepsy. Postoperatively, there was a striking loss of interhemispheric BOLD correlations with preserved intrahemispheric correlations. These unique data provide important insights into the relationship between connectional anatomy and functional organization of the human brain. Such observations have the potential to increase our understanding of large-scale brain systems in health and disease as well as improve the treatment of neurologic disorders.
2

A mind-body interface alternates with effector-specific regions in motor cortex

Evan Gordon et al.Oct 28, 2022
+43
A
R
E
SUMMARY Primary motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down precentral gyrus from foot to face representations 1,2 . The motor homunculus has remained a textbook pillar of functional neuroanatomy, despite evidence for concentric functional zones 3 and maps of complex actions 4 . Using our highest precision functional magnetic resonance imaging (fMRI) data and methods, we discovered that the classic homunculus is interrupted by regions with sharpy distinct connectivity, structure, and function, alternating with effector-specific (foot, hand, mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, and to prefrontal, insular, and subcortical regions of the Cingulo-opercular network (CON), critical for executive action 5 and physiological control 6 , arousal 7 , and processing of errors 8 and pain 9 . This interdigitation of action control-linked and motor effector regions was independently verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant, child) precision fMRI revealed potential cross-species analogues and developmental precursors of the inter-effector system. An extensive battery of motor and action fMRI tasks documented concentric somatotopies for each effector, separated by the CON-linked inter-effector regions. The inter-effector regions lacked movement specificity and co-activated during action planning (coordination of hands and feet), and axial body movement (e.g., abdomen, eyebrows). These results, together with prior work demonstrating stimulation-evoked complex actions 4 and connectivity to internal organs (e.g., adrenal medulla) 10 , suggest that M1 is punctuated by an integrative system for implementing whole-body action plans. Thus, two parallel systems intertwine in motor cortex to form an integrate-isolate pattern: effector-specific regions (foot, hand, mouth) for isolating fine motor control, and a mind-body interface (MBI) for the integrative whole-organism coordination of goals, physiology, and body movement.
2
5.0
Citation9
1
Save
1

Psilocybin desynchronizes the human brain

Joshua Siegel et al.Jul 17, 2024
+30
G
A
J
Abstract A single dose of psilocybin, a psychedelic that acutely causes distortions of space–time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials 1–4 . In animal models, psilocybin induces neuroplasticity in cortex and hippocampus 5–8 . It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg), and brought back for an additional psilocybin dose 6–12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics.
Load More