AT
Alejandro Torres-Sánchez
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
20
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Mapping mechanical stress in curved epithelia of designed size and shape

Ariadna Marín-Llauradó et al.May 4, 2022
Abstract The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineered curved epithelial monolayers of controlled size and shape and mapped their state of stress. We designed pressurized epithelia with circular, rectangular and ellipsoidal footprints. We developed a computational method to map the stress tensor in these epithelia. This method establishes a direct correspondence between epithelial shape and mechanical stress without assumptions of material properties. In epithelia with spherical geometry spanning more than one order of magnitude in radius, we show that stress weakly increases with areal strain in a size-independent manner. In epithelia with rectangular and ellipsoidal cross-section we found pronounced stress anisotropies consistent with the asymmetric distribution of tractions measured at the cell-substrate contact line. In these anisotropic profiles, cell shape tended to align with the direction of maximum principal stress but this alignment was non-universal and depended on epithelial geometry. Besides interrogating the fundamental mechanics of epithelia over a broad range of sizes and shapes, our approach will enable a systematic study of how geometry and stress influence epithelial fate and function in three-dimensions.
1
Citation4
0
Save
20

Patterning of membrane adhesion under hydraulic stress

Céline Dinet et al.Jan 4, 2023
Abstract Hydraulic fracturing plays a major role in the formation of biological lumens during embryonic development, when the accumulation of pressurized fluid leads to the formation of microlumens that fracture cell-cell contacts and later evolve to form a single large lumen. However, the physical principles underpinning the formation of a pattern of microlumens from a pristine adhesion and their subsequent coarsening are poorly understood. Here, we use giant unilamellar vesicles adhered to a supported lipid bilayer and subjected to osmotic stress to generate and follow the dynamics of hydraulic fracturing akin to those in cells. Using this simplified system together with theoretical modelling and numerical simulations, we provide a mechanistic understanding of the nucleation of hydraulic cracks, their spatial patterns and their coarsening dynamics. Besides coarsening, we show that microlumens can irreversibly bud out of the membrane, reminiscent of endocytic vesicles in cell-cell adhesion. By establishing the physics of patterning and dynamics of hydraulic cracks, our work unveils the mechanical constraints for the biological regulation of hydraulically-driven adhesion remodeling.
20
Citation3
0
Save
13

Polarity-driven three-dimensional spontaneous rotation of a cell doublet

Linjie Lu et al.Dec 22, 2022
Abstract Cell mechanical interactions play a fundamental role in the self-organisation of organisms. How these interactions drive coordinated cell movement in three-dimensions remains unclear. Here we report that cell doublets embedded in a 3D extracellular matrix undergo spontaneous rotations and we investigate the rotation mechanism using live cell imaging, quantitative measurements, mechanical perturbations, and theory. We find that rotation is driven by a polarized distribution of myosin within cell cortices. The mismatched orientation of this polarized distribution breaks the doublet mirror symmetry. In addition, cells adhere at their interface through adherens junctions and with the extracellular matrix through focal contacts near myosin clusters. Using a physical theory describing the doublet as two interacting active surfaces, we find that rotation is driven by myosin-generated gradients of active tension, whose profiles are dictated by interacting cell polarity axes. We show that interface three-dimensional shapes can be understood from the Curie principle: shapes symmetries are related to broken symmetries of myosin distribution in cortices. To test for the rotation mechanism, we suppress myosin clusters using laser ablation and we generate new myosin clusters by optogenetics. Our work clarifies how polarity-oriented active mechanical forces drive collective cell motion in three dimensions.
13
Citation2
0
Save