PS
Parishmita Sarma
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
11
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
32

Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system

Parishmita Sarma et al.Jun 7, 2022
Abstract Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore novel aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, which share a common chemokine agonist (CXCL12), in terms of their G-protein coupling, β-arrestin (βarr) recruitment, contribution of GRKs, and ERK1/2 MAP kinase activation. We observe that CXCR7 lacks G-protein coupling while maintaining robust βarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected, however, it exhibits significantly reduced βarr-coupling compared to CXCR7 in response to their shared natural agonist, CXCL12. These two receptors induce distinct βarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We further determine the crystal structure of βarr2 in complex with a carboxyl-terminal phosphopeptide derived from CXCR7, which reveals a smaller interdomain rotation than observed previously for activated βarrs. Importantly, structure-guided cellular experiments reveal a key contribution of a single phosphorylation site in CXCR7 on βarr recruitment and endosomal trafficking. Taken together, our study provides molecular insights into intrinsic bias encoded in the CXCR4-CXCR7 system, and it has broad implications for therapeutically important framework of biased agonism.
32
Citation5
0
Save
34

Structural insights into ligand-recognition, activation, and signaling-bias at the complement C5a receptor, C5aR1

Shirsha Saha et al.Jan 17, 2023
Abstract Activation of the complement cascade is a critical part of our innate immune response against invading pathogens, and it operates in a concerted fashion with the antibodies and phagocytic cells towards the clearance of pathogens. The complement peptide C5a, generated during the activation of complement cascade, is a potent inflammatory molecule, and increased levels of C5a are implicated in multiple inflammatory disorders including the advanced stages of COVID-19 pathophysiology. The proximal step in C5a-mediated cellular and physiological responses is its interaction with two different seven transmembrane receptors (7TMRs) known as C5aR1 and C5aR2. Despite a large body of functional data on C5a-C5aR1 interaction, direct visualization of their interaction at high-resolution is still lacking, and it represents a significant knowledge gap in our current understanding of complement receptor activation and signaling. Here, we present cryo-EM structures of C5aR1 activated by its natural agonist C5a, and a G-protein-biased synthetic peptide ligand C5a pep , in complex with heterotrimeric G-proteins. The C5a-C5aR1 structure reveals the ligand binding interface involving the N-terminus and extracellular loops of the receptor, and we observe that C5a exhibits a significant conformational change upon its interaction with the receptor compared to the basal conformation. On the other hand, the structural details of C5a pep -C5aR1 complex provide a molecular basis to rationalize the ability of peptides, designed based on the carboxyl-terminus sequence of C5a, to act as potent agonists of the receptor, and also the mechanism underlying their biased agonism. In addition, these structural snapshots also reveal activation-associated conformational changes in C5aR1 including outward movement of TM6 and a dramatic rotation of helix 8, and the interaction interface for G-protein-coupling. In summary, this study provides previously lacking molecular basis for the complement C5a recognition and activation of C5aR1, and it should facilitate structure-based discovery of novel lead molecules to target C5aR1 in inflammatory disorders.
34
Citation2
0
Save
22

Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors

Jagannath Maharana et al.Jul 5, 2023
Abstract β-arrestins are multifunctional proteins that are critically involved in regulating spatio-temporal aspects of GPCR signaling. The interaction of β-arrestins with GPCRs is typically conceptualized in terms of receptor activation and phosphorylation primarily in the carboxyl-terminus. Interestingly however, there are several GPCRs that harbor majority of phosphorylation sites in their 3 rd intracellular loop (ICL3) instead of carboxyl-terminus but still robustly engage β-arrestins. Moreover, there are several 7TMRs that are now characterized as intrinsically-biased, β-arrestin-coupled receptors (ACRs) due to lack of functional G-protein-coupling but robust β-arrestin binding leading to functional outcomes. The molecular basis of β-arrestin interaction and activation upon binding to these types of 7TMRs is currently elusive, and it represents a major knowledge gap in our current understanding of this signaling system. Here, we present seven cryo-EM structures of β-arrestins in basal state, activated by the muscarinic M2 receptor (M2R) through its ICL3, and a β-arrestin-coupled receptor known as decoy D6 receptor (D6R). These structural snapshots combined with biochemical, cellular, and biophysical experiments including HDX-MS and MD simulation provide novel insights into the ability of β-arrestins to preferentially select specific phosphorylation patterns in the receptors, and also illuminate the structural diversity in 7TMR-β-arrestin interaction. Surprisingly, we also observe that the carboxyl-terminus of β-arrestin2 but not β-arrestin1 undergoes structural transition from a β-strand to α-helix upon activation by D6R, which may preclude the core-interaction with the activated receptor. Taken together, our study elucidates previously unappreciated aspects of 7TMR-β-arrestin interaction, and provides important mechanistic clues about how the two isoforms of β-arrestins can recognize and regulate a large repertoire of GPCRs.
22
Citation2
0
Save
39

Structural snapshots uncover a lock-and-key type conserved activation mechanism of β-arrestins by GPCRs

Jagannath Maharana et al.Oct 10, 2022
Abstract Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) is a key determinant for the binding and activation of multifunctional regulatory proteins known as β-arrestins (βarrs). Although the primary sequence and phosphorylation pattern of GPCRs are poorly conserved, the downstream functional responses mediated by βarrs such as receptor desensitization, endocytosis and signaling are broadly applicable across GPCRs. A conserved principle of βarr activation, if any, upon their interaction with different GPCRs harboring divergent phosphorylation patterns remains to be visualized, and it represents a major knowledge gap in our current understanding of GPCR signaling and regulatory paradigms. Here, we present four structural snapshots of activated βarrs, in complex with distinct phosphorylation patterns derived from the carboxyl-terminus of three different GPCRs, determined using cryogenic-electron microscopy (cryo-EM). These structures of activated βarrs elucidate a “lock-and-key” type conserved mechanism of βarr activation wherein a P-X-P-P phosphorylation pattern in GPCRs interacts with a spatially organized K-K-R-R-K-K sequence in the N-domain of βarrs. Interestingly, the P-X-P-P pattern simultaneously engages multiple structural elements in βarrs responsible for maintaining the basal conformation, and thereby, leads to efficient βarr activation. The conserved nature of this lock-and-key mechanism is further illustrated by a comprehensive sequence analysis of the human GPCRome, and demonstrated in cellular context with targeted mutagenesis including “loss-of-function” and “gain-of-function” experiments with respect to βarr activation measured by an intrabody-based conformational sensor. Taken together, our findings uncover previously lacking structural insights, which explain the ability of distinct GPCRs to activate βarrs through a common mechanism, and a key missing link in the conceptual framework of GPCR-βarr interaction and resulting functional outcomes.
39
Citation1
0
Save
1

Structure-guided engineering of biased-agonism in the human niacin receptor via single amino acid substitution

Manish Yadav et al.Jul 3, 2023
Abstract The Hydroxycarboxylic acid receptor 2 (HCA2), also known as the niacin receptor or GPR109A, is a prototypical G protein-coupled receptor that plays a central role in the inhibition of lipolytic and atherogenic activities in our body. Interestingly, GPR109A activation also results in vasodilation that is linked to the side-effect of flushing associated with dyslipidemia drugs such as niacin. This receptor continues to be a key target for developing novel pharmacophores and lead compounds as potential therapeutics in dyslipidemia with minimized flushing response, however, the lack of structural insights into agonist-binding and receptor activation has limited the efforts. Here, we present five different cryo-EM structures of the GPR109A-G-protein complexes with the receptor bound to dyslipidemia drugs, niacin or acipimox, non-flushing agonists, MK6892 or GSK256073, and recently approved psoriasis drug, monomethyl fumarate (MMF). These structures allow us to visualize the binding mechanism of agonists with a conserved molecular interaction network, and elucidate the previously lacking molecular basis of receptor activation and transducer-coupling. Importantly, cellular pharmacology experiments, guided by the structural framework determined here, elucidate pathway-selective biased signaling elicited by the non-flushing agonists. Finally, taking lead from the structural insights, we successfully engineered receptor mutants via single amino acid substitutions that either fail to elicit agonist-induced transducer-coupling or exhibits G-protein signaling bias. Taken together, our study provides previously lacking structural framework to understand the agonist-binding and activation of GPR109A, and opens up the possibilities of structure-guided novel drug discovery targeting this therapeutically important receptor.
1
Citation1
0
Save
0

A genetically-encoded nanobody sensor reveals conformational diversity in β-arrestins orchestrated by distinct seven transmembrane receptors

Parishmita Sarma et al.Feb 22, 2024
Abstract Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatio-temporal pattern of receptor localization and downstream signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop and characterize novel sensors capable of reporting distinct βarr conformations in cellular context. Here, we design an intrabody version of a βarr-recognizing nanobody (nanobody32), referred to as intrabody32 (Ib32), in NanoLuc enzyme complementation assay format, and measure its ability to recognize βarr1 and 2 in live cells upon activation of a broad set of GPCRs. We discover that Ib32 robustly recognizes activated βarr1 and 2 in the plasma membrane as well as in the endosomes, and effectively mirrors βarr recruitment profile upon stimulation of GPCRs. We also design an Ib32 sensor for single-photon polarization microscopy with a change in linear dichroism as readout and demonstrate its utility for monitoring βarr activation upon stimulation of angiotensin receptor by its natural and biased agonists. Interestingly, when used side-by-side with a previously described sensor of βarr1 conformation known as Ib30, Ib32 uncovers distinct conformational signatures imparted on βarrs by different GPCRs, which is further corroborated using an orthogonal limited proteolysis assay. Taken together, our study presents Ib32 as a novel sensor to monitor βarr activation and leverages it to uncover conformational diversity encoded in the GPCR-βarr system with direct implications for improving the current understanding of GPCR signaling and regulatory paradigms.
0

Cooperative dynamics of PARP-1 Zinc-finger domains in the detection of DNA single-strand breaks

Parishmita Sarma et al.Jun 9, 2024
ABSTRACT The DNA single-strand break (SSB) repair pathway is initiated by the multifunctional enzyme PARP-1, which recognizes the broken DNA ends by its two zinc-finger domains, Zn1 and Zn2. Despite a number of experiments performed with different DNA configurations and reduced fragments of PARP-1, many details of this interaction that is crucial to the correct initiation of the repair chain are still unclear. We performed Molecular Dynamics (MD) computer simulations of the interaction between the Zn1/Zn2 domains of PARP-1 and a DNA hairpin including a missing nucleotide to simulate the presence of an SSB, a construct used in recent experiments. The role of Zn1 and Zn2 interacting with the SSB ends is studied in detail, both independently and cooperatively. We also explored, PARP-1 operating as a dimer, with the two Zn-fingers coming from two separate copies of the enzyme. By an extensive set of all-atom molecular simulations employing state-of-the art force fields, assisted by empirical docking and free-energy calculations, we conclude that the particular conformation of the DNA hairpin can indeed spontaneously open up by thermal fluctuations, up to extremely kinked deformations. However, such extreme localized deformations are rarely observed in free, long DNA fragments. Protein side-loops make contact with the DNA hairpin grooves, and help Zn2 to penetrate deep in the SSB gap. In this way, Zn2 can interact with the nucleotides opposite to the missing base. OVerall, Zn1 plays a secondary role: the crucial factor for the interaction is the relative arrangement of the Zn1/Zn2 couple, and their mutual orientation with respect to the 3 ′ and 5 ′ SSB end terminals. This helps to obtain an early interacting configuration, which ultimately leads to molecular PARP-1-DNA structures similar to those observed experimentally. Such findings represent an important step toward defining the detailed function of PARP-1 in the early stages of SSB recognition.
60

Structural insights into agonist-binding and activation of the human complement C3a receptor

Manish Yadav et al.Feb 9, 2023
Abstract The complement cascade is an integral part of innate immunity, and it plays a crucial role in our body’s innate immune response including combating microbial infections. Activation of the complement cascade results in the generation of multiple peptide fragments, of which complement C3a and C5a are potent anaphylatoxins. The complement C3a binds and activates a G protein-coupled receptor (GPCR) known as C3aR while C5a activates two distinct receptors namely C5aR1 and C5aR2. Our current understanding of complement peptide recognition by their corresponding receptors is limited primarily to biochemical studies, and direct structural visualization of ligand-receptor complexes is still elusive. Here, we present structural snapshots of C3aR in complex with heterotrimeric G-proteins, with the receptor in ligand-free state, activated by full-length complement C3a, and a peptide agonist EP54, derived based on the carboxyl-terminal sequence of C5a. A comprehensive analysis of these structures uncovers the critical residues involved in C3a-C3aR interaction, and also provides molecular insights to rationally design carboxyl-terminal fragments of C3a and C5a to act as potent agonists of the receptor. Surprisingly, a comparison of C3a-C3aR structure with C5a-C5aR1 structure reveals diagonally opposite placement of these two complement peptides on their respective receptors, which helps explain the subtype selectivity of these complement peptides. Finally, taking lead from the structural insights, we also identify EP141, a peptide derived from the carboxyl-terminus of C3a, as a G-protein-biased agonist at C3aR. Taken together, our study illuminates the structural mechanism of complement C3a recognition by C3aR, and it also offers the first structural template for designing novel C3aR ligands with therapeutic potential for inflammatory disorders.