EG
Eyal Gottlieb
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(81% Open Access)
Cited by:
14,857
h-index:
74
/
i10-index:
122
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Succinate is an inflammatory signal that induces IL-1β through HIF-1α

Gillian Tannahill et al.Mar 22, 2013
+29
J
A
G
Succinate is identified as a metabolite in innate immune signalling, which leads to enhanced interleukin-1β production during inflammation. The bacterial endotoxin lipopolysaccharide activates macrophages, as part of the innate immunity response, by inducing a shift from oxidative to glycolytic metabolism. Gillian Tannahill et al. show here that lipopolysaccharide increases levels of the tricarboxylic acid cycle intermediate succinate in macrophages through a metabolic process not previously reported in macrophages, the 'GABA shunt'. Succinate in turn drives the key pro-inflammatory cytokine interleukin-1β. Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis1. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the ‘GABA (γ-aminobutyric acid) shunt’ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.
0

Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase

Mary Selak et al.Jan 1, 2005
+7
E
S
M
Several mitochondrial proteins are tumor suppressors. These include succinate dehydrogenase (SDH) and fumarate hydratase, both enzymes of the tricarboxylic acid (TCA) cycle. However, to date, the mechanisms by which defects in the TCA cycle contribute to tumor formation have not been elucidated. Here we describe a mitochondrion-to-cytosol signaling pathway that links mitochondrial dysfunction to oncogenic events: succinate, which accumulates as a result of SDH inhibition, inhibits HIF-α prolyl hydroxylases in the cytosol, leading to stabilization and activation of HIF-1α. These results suggest a mechanistic link between SDH mutations and HIF-1α induction, providing an explanation for the highly vascular tumors that develop in the absence of VHL mutations.
0

TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis

Karim Bensaad et al.Jul 1, 2006
+5
M
A
K
The p53 tumor-suppressor protein prevents cancer development through various mechanisms, including the induction of cell-cycle arrest, apoptosis, and the maintenance of genome stability. We have identified a p53-inducible gene named TIGAR (TP53-induced glycolysis and apoptosis regulator). TIGAR expression lowered fructose-2,6-bisphosphate levels in cells, resulting in an inhibition of glycolysis and an overall decrease in intracellular reactive oxygen species (ROS) levels. These functions of TIGAR correlated with an ability to protect cells from ROS-associated apoptosis, and consequently, knockdown of endogenous TIGAR expression sensitized cells to p53-induced death. Expression of TIGAR may therefore modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired. The decrease of intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic damage.
0

Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells

Oliver Maddocks et al.Dec 14, 2012
+4
S
C
O
The authors show that p53 helps cancer cells survive serine depletion by coordinating metabolic remodelling; a diet lacking serine slowed tumour growth in mice, with p53-null tumours showing greatest sensitivity to serine starvation. The tumour suppressor p53 functions in a number of stress-response pathways. Karen Vousden and colleagues now report that p53 also helps cancer cells to survive conditions of serine depletion by limiting proliferation and channeling serine metabolism to glutathione production and reactive oxygen species limitation. Cells that lack p53 fail to undergo these adaptations and are much more vulnerable to serine depletion. These findings were exploited to demonstrate that a diet lacking serine can reduce the growth of p53-deficient tumours in a mouse model. This work suggests that serine depletion — by removal from the diet, enzymatic depletion or some other means — is worthy of further investigation as a possible therapeutic approach. Cancer cells acquire distinct metabolic adaptations to survive stress associated with tumour growth and to satisfy the anabolic demands of proliferation. The tumour suppressor protein p53 (also known as TP53) influences a range of cellular metabolic processes, including glycolysis1,2, oxidative phosphorylation3, glutaminolysis4,5 and anti-oxidant response6. In contrast to its role in promoting apoptosis during DNA-damaging stress, p53 can promote cell survival during metabolic stress7, a function that may contribute not only to tumour suppression but also to non-cancer-associated functions of p538. Here we show that human cancer cells rapidly use exogenous serine and that serine deprivation triggered activation of the serine synthesis pathway and rapidly suppressed aerobic glycolysis, resulting in an increased flux to the tricarboxylic acid cycle. Transient p53-p21 (also known as CDKN1A) activation and cell-cycle arrest promoted cell survival by efficiently channelling depleted serine stores to glutathione synthesis, thus preserving cellular anti-oxidant capacity. Cells lacking p53 failed to complete the response to serine depletion, resulting in oxidative stress, reduced viability and severely impaired proliferation. The role of p53 in supporting cancer cell proliferation under serine starvation was translated to an in vivo model, indicating that serine depletion has a potential role in the treatment of p53-deficient tumours.
0
Citation845
0
Save
0

mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation

Masahiro Morita et al.Nov 1, 2013
+16
V
S
M
mRNA translation is thought to be the most energy-consuming process in the cell. Translation and energy metabolism are dysregulated in a variety of diseases including cancer, diabetes, and heart disease. However, the mechanisms that coordinate translation and energy metabolism in mammals remain largely unknown. The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates mRNA translation and other anabolic processes. We demonstrate that mTORC1 controls mitochondrial activity and biogenesis by selectively promoting translation of nucleus-encoded mitochondria-related mRNAs via inhibition of the eukaryotic translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Stimulating the translation of nucleus-encoded mitochondria-related mRNAs engenders an increase in ATP production capacity, a required energy source for translation. These findings establish a feed-forward loop that links mRNA translation to oxidative phosphorylation, thereby providing a key mechanism linking aberrant mTOR signaling to conditions of abnormal cellular energy metabolism such as neoplasia and insulin resistance.
0
Citation702
0
Save
0

Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis

Eyal Gottlieb et al.May 22, 2003
C
M
S
E
During apoptosis, the mitochondrial membrane potential (MMP) decreases, but it is not known how this relates to the apoptotic process. It was recently suggested that cytochrome c is compartmentalized in closed cristal regions and therefore, matrix remodeling is required to attain complete cytochrome c release from the mitochondria. In this work we show that, at the onset of apoptosis, changes in MMP control matrix remodeling prior to cytochrome c release. Early after growth factor withdrawal the MMP declines and the matrix condenses. Both phenomena are reversed by adding oxidizable substrates. In mitochondria isolated from healthy cells, matrix condensation can be induced by either denying oxidizable substrates or by protonophores that dissipate the membrane potential. Matrix remodeling to the condensed state results in cristal unfolding and exposes cytochrome c to the intermembrane space facilitating its release from the mitochondria during apoptosis. In contrast, when a transmembrane potential is generated due to either electron transport or a pH gradient formed by acidifying the medium, mitochondria maintain an orthodox configuration in which most cytochrome c is sequestered in the cristae and is resistant to release by agents that disrupt the mitochondrial outer membrane.
0

Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress

Zachary Schug et al.Jan 1, 2015
+30
D
B
Z
A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment.
0
Citation665
0
Save
0

p53 status determines the role of autophagy in pancreatic tumour development

Mathias Rosenfeldt et al.Dec 1, 2013
+12
J
J
M
0
Citation651
0
Save
0

Glutaminolysis Activates Rag-mTORC1 Signaling

Raúl Durán et al.Jun 29, 2012
+4
A
W
R
Amino acids control cell growth via activation of the highly conserved kinase TORC1. Glutamine is a particularly important amino acid in cell growth control and metabolism. However, the role of glutamine in TORC1 activation remains poorly defined. Glutamine is metabolized through glutaminolysis to produce α-ketoglutarate. We demonstrate that glutamine in combination with leucine activates mammalian TORC1 (mTORC1) by enhancing glutaminolysis and α-ketoglutarate production. Inhibition of glutaminolysis prevented GTP loading of RagB and lysosomal translocation and subsequent activation of mTORC1. Constitutively active Rag heterodimer activated mTORC1 in the absence of glutaminolysis. Conversely, enhanced glutaminolysis or a cell-permeable α-ketoglutarate analog stimulated lysosomal translocation and activation of mTORC1. Finally, cell growth and autophagy, two processes controlled by mTORC1, were regulated by glutaminolysis. Thus, mTORC1 senses and is activated by glutamine and leucine via glutaminolysis and α-ketoglutarate production upstream of Rag. This may provide an explanation for glutamine addiction in cancer cells.
0

Serine is a natural ligand and allosteric activator of pyruvate kinase M2

Barbara Chaneton et al.Oct 12, 2012
+10
L
P
B
Cancer cells exhibit several unique metabolic phenotypes that are critical for cell growth and proliferation. Specifically, they overexpress the M2 isoform of the tightly regulated enzyme pyruvate kinase (PKM2), which controls glycolytic flux, and are highly dependent on de novo biosynthesis of serine and glycine. Here we describe a new rheostat-like mechanistic relationship between PKM2 activity and serine biosynthesis. We show that serine can bind to and activate human PKM2, and that PKM2 activity in cells is reduced in response to serine deprivation. This reduction in PKM2 activity shifts cells to a fuel-efficient mode in which more pyruvate is diverted to the mitochondria and more glucose-derived carbon is channelled into serine biosynthesis to support cell proliferation.
Load More