TP
Tim Peterson
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
2
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

A dual MTOR/NAD+ acting gerotherapy

Jinmei Li et al.Jan 19, 2023
+21
T
J
J
The geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging. In genome-wide CRISPRa screening with a novel class of N-O-Methyl-propanamide-containing compounds we named BIOIO-1001, we identified lipid metabolism centering on SIRT3 as a point of intersection of the mTOR/insulin and NAD+ pathways. In vivo testing indicated that BIOIO-1001 reduced high fat, high sugar diet-induced metabolic derangements, inflammation, and fibrosis, each being characteristic of non-alcoholic steatohepatitis (NASH). An unbiased screen of patient datasets suggested a potential link between the anti-inflammatory and anti-fibrotic effects of BIOIO-1001 in NASH models to those in amyotrophic lateral sclerosis (ALS). Directed experiments subsequently determined that BIOIO-1001 was protective in both sporadic and familial ALS models. Both NASH and ALS have no treatments and suffer from a lack of convenient biomarkers to monitor therapeutic efficacy. A potential strength in considering BIOIO-1001 as a therapy is that the blood biomarker that it modulates, namely plasma triglycerides, can be conveniently used to screen patients for responders. More conceptually, to our knowledge BIOIO-1001 is a first therapy that fits the geroscience hypothesis by acting on multiple core aging pathways and that can alleviate multiple conditions after they have set in.
6
Citation2
1
Save
0

Sphingolipid Biosynthesis Inhibition As A Host Strategy Against Diverse Pathogens

Sandeep Kumar et al.Apr 14, 2020
+15
J
J
S
Chloroquine is an anti-malarial and immunosuppressant drug that has cationic amphipathic chemical properties. We performed genome-wide screens in human cells with chloroquine and several other widely used cationic amphipathic drugs (CADs) including the anti-depressants, sertraline (Zoloft) and fluoxetine (Prozac), the analgesic nortriptyline (Pamelor), the anti-arrhythmic amiodarone (Cordarone), and the anti-hypertensive verapamil (Calan) to characterize their molecular similarities and differences. Despite CADs having different disease indications but consistent with them sharing key chemical properties, we found CADs to have remarkably similar phenotypic profiles compared with non-CADs we and others have previously screened. The most significant genetic interaction for all CADs was the initiating step in sphingolipid biosynthesis catalyzed by serine palmitoyltransferase (SPT). A comparison of genome-wide screens performed with diverse pathogens from viruses, bacteria, plants, and parasites including Ebola, adeno-associated virus AAV2, HIV, Rotavirus, Influenza A, Zika virus, Picornavirus, Exotoxin A, Cholera toxin, Type III secretion system and Shiga toxin, Ricin toxin, and Toxoplasma gondii showed SPT as a top common host factor and 80% overlap overall in top hits specifically with CADs. Potential sphingolipid-mediated mechanisms for the host response- and virulence-modulating effects of CADs involve autophagy and SERPINE1/PAI-1 (plasminogen activator inhibitor-1). Chloroquine has recently shown potential as an anti-viral agent for the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease. Our study demonstrates that numerous readily available drugs molecularly function highly similar to chloroquine, which suggests they might be considered for further pre-clinical investigation in the context of SARS-CoV-2. More generally, our work suggests the diverse pathogen mitigating potential of drugs that inhibit host sphingolipid biosynthesis such as CADs.### Competing Interest StatementThe corresponding author, Timothy R Peterson, is the founder of Bio-I/O, a St. Louis-based biotech company specializing in drug target identification. Bio-I/O is the recipient of NIH/NIDDK funding (R42 DK121652), which is focused on different drugs than those studied herein, but is still in the space of drug target ID.
0

Cell fitness is an omniphenotype

Nicholas Jacobs et al.Dec 5, 2018
+3
J
J
N
Genotype-phenotype relationships are at the heart of biology and medicine. Numerous advances in genotyping and phenotyping have accelerated the pace of disease gene and drug discovery. Though now that there are so many genes and drugs to study, it makes prioritizing them difficult. Also, disease model assays are getting more complex and this is reflected in the growing complexity of research papers and the cost of drug development. Herein we propose a way out of this arms race. We argue for synthetic interaction testing in mammalian cells using cell fitness – which reflect changes in cell number that could be due to a number of factors – as a readout to judge the potential of a genetic or environmental variable of interest (e.g., a gene or drug). That is, if an unknown perturbation of a mammalian gene or drug of interest is combined with a known perturbation and causes a strong cell fitness phenotype relative to that caused by the known perturbation alone, this justifies proceeding with the new gene/drug in more complex models like mouse models where the known perturbation is already validated. This recommendation is backed by the following: 1) human genes essential for cell growth involve nearly all classifications of cellular and molecular processes; 2) Nearly all human genes important in cancer – a disease defined by altered cell number – are also important in other complex diseases; 3) Many drugs affect a patient’s condition and the fitness of their cells comparably. Taken together, these findings suggest cell fitness could be a broadly applicable phenotype for understanding gene and drug function. Measuring cell fitness is robust and requires little time and money. These are features that have long been capitalized on by pioneers using model organisms that we hope more mammalian biologists will recognize.