AD
Ajit Divakaruni
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(54% Open Access)
Cited by:
1,207
h-index:
39
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Analysis and Interpretation of Microplate-Based Oxygen Consumption and pH Data

Ajit Divakaruni et al.Jan 1, 2014
+2
D
A
A
Breakthrough technologies to measure cellular oxygen consumption and proton efflux are reigniting the study of cellular energetics by increasing the scope and pace with which discoveries are made. As we learn the variation in metabolism between cell types is large, it is helpful to continually provide additional perspectives and update our roadmap for data interpretation. In that spirit, this chapter provides the following for those conducting microplate-based oxygen consumption experiments: (i) a description of the standard parameters for measuring respiration in intact cells, (ii) a framework for data analysis and normalization, and (iii) examples of measuring respiration in permeabilized cells to follow up results observed with intact cells. Additionally, rate-based measurements of extracellular pH are increasingly used as a qualitative indicator of glycolytic flux. As a resource to help interpret these measurements, this chapter also provides a detailed accounting of proton production during glucose oxidation in the context of plate-based assays.
0

Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels

Thekla Cordes et al.May 10, 2016
+8
A
M
T
Metabolic reprogramming is emerging as a hallmark of the innate immune response, and the dynamic control of metabolites such as succinate serves to facilitate the execution of inflammatory responses in macrophages and other immune cells. Immunoresponsive gene 1 (Irg1) expression is induced by inflammatory stimuli, and its enzyme product cis-aconitate decarboxylase catalyzes the production of itaconate from the tricarboxylic acid cycle. Here we identify an immunometabolic regulatory pathway that links Irg1 and itaconate production to the succinate accumulation that occurs in the context of innate immune responses. Itaconate levels and Irg1 expression correlate strongly with succinate during LPS exposure in macrophages and non-immune cells. We demonstrate that itaconate acts as an endogenous succinate dehydrogenase inhibitor to cause succinate accumulation. Loss of itaconate production in activated macrophages from Irg1−/− mice decreases the accumulation of succinate in response to LPS exposure. This metabolic network links the innate immune response and tricarboxylic acid metabolism to function of the electron transport chain.
0

Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis

Courtney Green et al.Nov 16, 2015
+4
A
M
C
Stable-isotope tracing and metabolomics analysis comparing pre-adipocytes and differentiated adipocytes revealed a shift from glucose and glutamine utilization to increased branched chain amino acid catabolic flux to generate acetyl–coenzyme A. Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl–coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation.
12

Calculation of ATP production rates using the Seahorse XF Analyzer

Brandon Desousa et al.Apr 17, 2022
+17
A
K
B
ABSTRACT Oxidative phosphorylation and glycolysis are the dominant ATP-generating pathways in mammalian metabolism. The balance between these two pathways is often shifted to execute cell-specific functions in response to stimuli that promote activation, proliferation, or differentiation. However, measurement of these metabolic switches has remained mostly qualitative, making it difficult to discriminate between healthy, physiological changes in energy transduction or compensatory responses due to metabolic dysfunction. We therefore developed a broadly applicable method to calculate ATP production rates from oxidative phosphorylation and glycolysis using Seahorse XF Analyzer data. We quantified the bioenergetic changes observed during macrophage polarization as well as cancer cell adaptation to in vitro culture conditions. Additionally, we detected substantive changes in ATP utilization upon neuronal depolarization and T cell receptor activation that are not evident from steady-state ATP measurements. This method generates a single readout that allows the direct comparison of ATP produced from oxidative phosphorylation and glycolysis in live cells. Additionally, the manuscript provides a framework for tailoring the calculations to specific cell systems or experimental conditions.
12
Citation6
0
Save
19

Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome

Tianyang Yan et al.Jan 22, 2023
+8
M
A
T
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.
19
Citation5
0
Save
20

Androgen receptor inhibition induces metabolic reprogramming and increased reliance on oxidative mitochondrial metabolism in prostate cancer

Preston Crowell et al.Jun 1, 2022
+18
A
J
P
Abstract Prostate cancer cells that survive clinical androgen receptor (AR) blockade mediate disease progression and lethality. Reprogrammed metabolic signaling is one mechanism by which tumor cells can survive treatment. However, how AR inhibition reprograms metabolism, and whether altered metabolism can be exploited to eradicate cells that survive AR blockade, remains unclear. Here, we comprehensively characterized the effect of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. AR inhibition maintains oxidative mitochondrial metabolism and reduces glycolytic signaling, through hexokinase II downregulation and decreased MYC activity. Robust elongation of mitochondria via reduced DRP1 activity supports cell fitness after AR blockade. In addition, AR inhibition enhances sensitivity to complex I inhibitors in several models, suggesting that AR blockade increases reliance on oxidative mitochondrial metabolism. Our study provides an enhanced understanding of how AR inhibition alters metabolic signaling and highlights the potential of therapies that target metabolic vulnerabilities in AR-inhibited cells.
20
Citation2
0
Save
0

The metabolic cofactor Coenzyme A enhances alternative macrophage activation via MyD88-linked signaling

Anthony Jones et al.Mar 31, 2024
+12
N
A
A
ABSTRACT Metabolites and metabolic co-factors can shape the innate immune response, though the pathways by which these molecules adjust inflammation remain incompletely understood. Here we show that the metabolic cofactor Coenzyme A (CoA) enhances IL-4 driven alternative macrophage activation [m(IL-4)] in vitro and in vivo . Unexpectedly, we found that perturbations in intracellular CoA metabolism did not influence m(IL-4) differentiation. Rather, we discovered that exogenous CoA provides a weak TLR4 signal which primes macrophages for increased receptivity to IL-4 signals and resolution of inflammation via MyD88. Mechanistic studies revealed MyD88-linked signals prime for IL-4 responsiveness, in part, by reshaping chromatin accessibility to enhance transcription of IL-4-linked genes. The results identify CoA as a host metabolic co-factor that influences macrophage function through an extrinsic TLR4-dependent mechanism, and suggests that damage-associated molecular patterns (DAMPs) can prime macrophages for alternative activation and resolution of inflammation.
0
Citation1
0
Save
1

The BCKDK inhibitor BT2 is a chemical uncoupler that lowers mitochondrial ROS production andde novolipogenesis

Aracely Acevedo et al.Aug 16, 2023
+10
B
A
A
ABSTRACT Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids (BCKAs) are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and BCKA levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly five-fold less potent than the prototypical uncoupler 2,4-dinitrophenol (DNP), and phenocopies DNP in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.
1
Citation1
0
Save
0

Blocking mitochondrial pyruvate import causes energy wasting via futile lipid cycling in brown fat

Michaela Veliova et al.Nov 15, 2019
+11
I
C
M
Futile lipid cycling is an ATP-wasting process proposed to participate in energy expenditure of mature fat-storing white adipocytes, given their inability to oxidize fat. The hallmark of activated brown adipocytes is to increase fat oxidation by uncoupling respiration from ATP synthesis. Whether ATP-consuming lipid cycling can contribute to BAT energy expenditure has been largely unexplored. Here we find that pharmacological inhibition of the mitochondrial pyruvate carrier (MPC) in brown adipocytes is sufficient to increase ATP-synthesis fueled by fatty acid oxidation, even in the absence of adrenergic stimulation. We find that elevated ATP-demand induced by MPC inhibition results from activation of futile lipid cycling. Furthermore, we identify that glutamine consumption and the Malate-Aspartate Shuttle are required for the increase in Energy Expenditure induced by MPC inhibition in Brown Adipocytes (MAShEEBA). These data demonstrate that futile energy expenditure through lipid cycling can be activated in BAT by altering fuel availability to mitochondria. Therefore, we identify a new mechanism to increase fat oxidation and energy expenditure in BAT that bypasses the need for adrenergic stimulation of mitochondrial uncoupling.
5

Pro-inflammatory macrophage activation does not require inhibition of mitochondrial respiration

Andréa Ball et al.May 14, 2024
+13
A
K
A
ABSTRACT Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Upon classical macrophage activation, oxidative phosphorylation sharply decreases and mitochondria are repurposed to accumulate signals that amplify effector function. However, evidence is conflicting as to whether this collapse in respiration is essential or largely dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Only stimuli that engage both MyD88- and TRIF-linked pathways decrease mitochondrial respiration, and different pro-inflammatory stimuli have varying effects on other bioenergetic parameters. Additionally, pharmacologic and genetic models of electron transport chain inhibition show no direct link between respiration and pro-inflammatory activation. Studies in mouse and human macrophages also reveal accumulation of the signaling metabolites succinate and itaconate can occur independently of characteristic breaks in the TCA cycle. Finally, in vivo activation of peritoneal macrophages further demonstrates that a pro-inflammatory response can be elicited without reductions to oxidative phosphorylation. Taken together, the results suggest the conventional model of mitochondrial reprogramming upon macrophage activation is incomplete.
Load More