JK
Jongwoon Kim
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2
h-index:
16
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Multifunctional ferromagnetic fiber robots for navigation, sensing, and treatment in minimally invasive surgery

Yujing Zhang et al.Jan 30, 2023
+14
R
Y
Y
Abstract Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Here, we present a robotic fiber platform for integrating navigation, sensing, and therapeutic functions at a submillimeter scale. These fiber robots consist of ferromagnetic, electrical, optical, and microfluidic components, fabricated with a thermal drawing process. Under magnetic actuation, they can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, we utilize Langendorff mouse hearts model, glioblastoma microplatforms, and in vivo mouse models to demonstrate the capabilities of sensing electrophysiology signals and performing localized treatment. Additionally, we demonstrate that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
1

Tapered Drug delivery, Optical stimulation, and Electrophysiology (T-DOpE) probes reveal the importance of cannabinoid signaling in hippocampal CA1 oscillations in behaving mice

Jongwoon Kim et al.Jun 9, 2023
+4
E
H
J
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Here we developed a thermal tapering process (TTP) which enables the fabrication of novel, low-cost, flexible probes that combine ultrafine features of dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly of the probes. We demonstrate that our T-DOpE ( T apered D rug delivery, Op tical stimulation, and E lectrophysiology) probe achieves in a single neuron-scale device (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. With a tapered geometry, the device tip can be minimized (as small as 50 μm) to ensure minimal tissue damage while the backend is ~20 times larger allowing for direct integration with industrial-scale connectorization. Acute and chronic implantation of the probes in mouse hippocampus CA1 revealed canonical neuronal activity at the level of local field potentials and spiking. Taking advantage of the triple-functionality of the T-DOpE probe, we monitored local field potentials with simultaneous manipulation of endogenous type 1 cannabinoid receptors (CB1R; via microfluidic agonist delivery) and CA1 pyramidal cell membrane potential (optogenetic activation). Electro-pharmacological experiments revealed that focal infusion of CB1R agonist CP-55,940 in dorsal CA1 downregulated theta and sharp wave-ripple oscillations. Furthermore, using the full electro-pharmacological-optical feature set of the T-DOpE probe we found that CB1R activation reduces sharp wave-ripples (SPW-Rs) by impairing the innate SPW-R-generating ability of the CA1 circuit.
1

Granular retrosplenial cortex layer 2/3 generates high-frequency oscillations coupled with hippocampal theta and gamma in online states or sharp-wave ripples in offline states

Karl‐Friedrich Arndt et al.Jul 11, 2023
+5
L
E
K
Neuronal oscillations support information transfer by temporally aligning the activity of anatomically distributed 'writer' and 'reader' cell assemblies. High-frequency oscillations (HFOs) such as hippocampal CA1 sharp-wave ripples (SWRs; 100-250 Hz) are sufficiently fast to initiate synaptic plasticity between assemblies and are required for memory consolidation. HFOs are observed in parietal and midline cortices including granular retrosplenial cortex (gRSC). In 'offline' brain states (e.g. quiet wakefulness) gRSC HFOs co-occur with CA1 SWRs, while in 'online' states (e.g. ambulation) HFOs persist with the emergence of theta oscillations. The mechanisms of gRSC HFO oscillations, specifically whether the gRSC can intrinsically generate HFOs, and which layers support HFOs across states, remain unclear. We addressed these issues in behaving mice using optogenetic excitation in individual layers of the gRSC and high density silicon-probe recordings across gRSC layers and hippocampus CA1. Optogenetically induced HFOs (iHFOs) could be elicited by depolarizing excitatory neurons with 100 ms half-sine wave pulses in layer 2/3 (L2/3) or layer 5 (L5) though L5 iHFOs were of lower power than in L2/3. Critically, spontaneous HFOs were only observed in L2/3 and never in L5. Intra-laminar monosynaptic connectivity between excitatory and inhibitory neurons was similar across layers, suggesting other factors restrict HFOs to L2/3. To compare HFOs in online versus offline states we analyzed, separately, HFOs that did or did not co-occur with CA1 SWRs. Using current-source density analysis we found uniform synaptic inputs to L2/3 during all gRSC HFOs, suggesting layer-specific inputs may dictate the localization of HFOs to L2/3. HFOs occurring without SWRs were aligned with the descending phase of both gRSC and CA1 theta oscillations and were coherent with CA1 high frequency gamma oscillations (50-80 Hz). These results demonstrate that gRSC can internally generate HFOs without rhythmic inputs and that HFOs occur exclusively in L2/3, coupled to distinct hippocampal oscillations in online versus offline states.
0

Reciprocal interactions between CA1 pyramidal and axo-axonic cells control sharp wave-ripple events

Earl Gilbert et al.Jul 4, 2024
+4
K
L
E
Excitation and inhibition compete to organize spike timing of pyramidal cells (PYR) in CA1 during network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >60 types of GABAergic interneurons in CA1. Axo-axonic cells (AAC) are defined by their synaptic targeting of the axon initial segment of pyramidal cells, potently controlling spike output. The impact of AAC activity on SPW-R is controversial, due mainly to ambiguity of AAC identification. Here we monitored and manipulated opto-tagged AACs in behaving mice using silicon probe recordings. We found a large variability of AAC neurons, varying from enhanced to suppressed spiking during SPW-Rs, in contrast to the near-uniform excitation of other parvalbumin-expressing interneurons. AACs received convergent monosynaptic inputs from local pyramidal cell assemblies, which strongly influenced their participation in SPW-Rs. Optogenetic silencing of AACs increased power and duration of SPW-Rs, recruiting a greater number of PYR, suggesting AACs control SPW-R dynamics. We hypothesize that lateral inhibition by reciprocal PYR-AAC interactions thus supports the organization of cell assemblies in SPW-R.
0

Spatially expandable fiber-based probes as a multifunctional deep brain interface

Shun‐Yuan Jiang et al.Oct 28, 2020
+12
K
Y
S
Abstract Understanding the cytoarchitecture and wiring of the brain requires improved methods to record and stimulate large groups of neurons with cellular specificity. This requires miniaturized neural interfaces that integrate into brain tissue without altering its properties. Existing neural interface technologies have been shown to provide high-resolution electrophysiological recording with high signal-to-noise ratio. However, with single implantation, the physical properties of these devices limit their access to one, small brain region. To overcome this limitation, we developed a platform that provides three-dimensional coverage of brain tissue through multisite multifunctional fiber-based neural probes guided in a helical scaffold. Chronic recordings from the spatially expandable fiber probes demonstrate the ability of these fiber probes capturing brain activities with a single-unit resolution for long observation times. Furthermore, using Thy1-ChR2-YFP mice we demonstrate the application of our probes in simultaneous recording and optical/chemical modulation of brain activities across distant regions. Similarly, varying electrographic brain activities from different brain regions were detected by our customizable probes in a mouse model of epilepsy, suggesting the potential of using these probes for the investigation of brain disorders such as epilepsy. Ultimately, this technique enables three-dimensional manipulation and mapping of brain activities across distant regions in the deep brain with minimal tissue damage, which can bring new insights for deciphering complex brain functions and dynamics in the near future.