RK
Ranjeet Kumar
Author with expertise in Tuberculosis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
225
h-index:
14
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology

Afsal Kolloli et al.May 19, 2021
ABSTRACT Phagocytosis of Mycobacterium tuberculosis (Mtb) aggregates, rather than similar numbers of single bacilli, induces host macrophage death and favors bacterial growth. Here, we examined whether aggregation contributes to enhanced Mtb pathogenicity in vivo in rabbit lungs. Rabbits were exposed to infectious aerosols containing mainly Mtb-aggregates (Mtb-AG) or Mtb-single cells (Mtb-SC). The lung bacterial load, histology, and immune cell composition were investigated over time. Genome-wide transcriptome analysis, cellular and tissue-level assays, and immunofluorescent imaging were performed on lung tissue to define and compare differential immune activation and pathogenesis between Mtb-AG and Mtb-SC infection. Lung bacillary loads, disease scores, lesion size, and structure were significantly higher in Mtb-AG than in Mtb-SC infected animals. A differential immune cell distribution and activation were noted in the lungs and spleen of the two groups of infected animals. Mtb-AG infected animals also showed early induction of inflammatory network genes associated with necrosis and reduced host cell viability. Consistently, larger lung granulomas with clumped Mtb, extensive necrotic foci, and elevated matrix metalloproteases expression were observed in Mtb-AG infected rabbits. Our findings suggest that bacillary aggregation increases Mtb fitness for improved growth and accelerated lung inflammation and cell death, thereby exacerbating disease pathology in the lungs.
1
Citation1
0
Save
7

Comprehensive analysis of disease pathology in immunocompetent and immunocompromised hamster models of SARS-CoV-2 infection

Santhamani Ramasamy et al.Jan 8, 2022
ABSTRACT The pathogenesis of SARS-CoV-2 in the context of a specific immunological niche is not fully understood. Here, we used a golden Syrian hamster model to systematically evaluate the kinetics of host response to SARS-CoV-2 infection, following disease pathology, viral loads, antibody responses, and inflammatory cytokine expression in multiple organs. The kinetics of SARS-CoV-2 pathogenesis and genomewide lung transcriptome was also compared between immunocompetent and immunocompromised hamsters. We observed that the body weight loss was proportional to the SARS-CoV-2 infectious dose and lasted for a short time only in immunocompetent hamsters. Body weight loss was more prominent and prolonged in infected immunocompromised hamsters. While the kinetics of viral replication and peak live viral loads were not significantly different at low and high infectious doses (LD and HD), the HD-infected immunocompetent animals developed severe lung disease pathology. The immunocompetent animals cleared the live virus in all tested tissues by 12 days post-infection and generated a robust serum antibody response. In contrast, immunocompromised hamsters mounted an inadequate SARS-CoV-2 neutralizing antibody response, and the virus was detected in the pulmonary and multiple extrapulmonary organs until 16 days post-infection. These hamsters also had prolonged moderate inflammation with severe bronchiolar-alveolar hyperplasia/metaplasia. Consistent with the difference in disease presentation, distinct changes in the expression of inflammation and immune cell response pathways and network genes were seen in the lungs of infected immunocompetent and immunocompromised animals. This study highlights the interplay between the kinetics of viral replication and the dynamics of SARS-CoV-2 pathogenesis at organ-level niches and maps how COVID-19 symptoms vary in different immune contexts. Together, our data suggest that the histopathological manifestations caused by progressive SARS-CoV-2 infection may be a better predictor of COVID-19 severity than individual measures of viral load, antibody response, and cytokine storm at the systemic or local (lungs) levels in the immunocompetent and immunocompromised hosts.
178

A SARS-CoV-2 vaccine designed for manufacturability results in unexpected potency and non-waning humoral response

Elliot Campbell et al.Feb 7, 2023
ABSTRACT The rapid development of several highly efficacious SARS-CoV-2 vaccines was an unprecedented scientific achievement that saved millions of lives. However, now that SARS-CoV-2 is transitioning to the endemic stage, there exists an unmet need for new vaccines that provide durable immunity, protection against variants, and can be more easily manufactured and distributed. Here we describe a novel protein component vaccine candidate, MT-001, based on a fragment of the SARS-CoV-2 spike protein that encompasses the receptor binding domain (RBD). Mice and hamsters immunized with a prime-boost regimen of MT-001 demonstrated extremely high anti-spike IgG titers, and remarkably this humoral response did not appreciably wane for up to 12 months following vaccination. Further, virus neutralization titers, including titers against variants such as Delta and Omicron BA.1, remained high without the requirement for subsequent boosting. MT-001 was designed for manufacturability and ease of distribution, and we demonstrate that these attributes are not inconsistent with a highly immunogenic vaccine that confers durable and broad immunity to SARS-CoV-2 and its emerging variants. These properties suggest MT-001 could be a valuable new addition to the toolbox of SARS-CoV-2 vaccines and other interventions to prevent infection and curtail additional morbidity and mortality from the ongoing worldwide pandemic.
0

Imaging the Architecture of Granulomas Induced by Mycobacterium tuberculosis Infection with Single-molecule Fluorescence In Situ Hybridization

Ranjeet Kumar et al.Jun 24, 2024
Abstract Granulomas are an important hallmark of Mycobacterium tuberculosis infection. They are organized and dynamic structures created when immune cells assemble around the sites of infection in the lungs that locally restrict M. tuberculosis growth and the host’s inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of surface markers on the host cells. However, very few Abs are available for model animals used in tuberculosis research, such as nonhuman primates and rabbits, and secreted immunological markers such as cytokines cannot be imaged in situ using Abs. Furthermore, traditional phenotypic surface markers do not provide sufficient resolution for the detection of the many subtypes and differentiation states of immune cells. Using single-molecule fluorescence in situ hybridization (smFISH) and its derivatives, amplified smFISH and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of the expression of these markers in single cells. An analysis of the combinatorial expressions of these markers allowed us to classify the cells into several subtypes, and to chart their densities within granulomas. For one mRNA target, hypoxia-inducible factor-1α, we imaged its mRNA and protein in the same cells, demonstrating the specificity of the probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.
12

Imaging Architecture of Granulomas Induced byMycobacterium tuberculosisInfections with Single-Molecule FISH

Ranjeet Kumar et al.Feb 3, 2023
Granulomas are an important hallmark of Mycobacterium tuberculosis (Mtb) infection. They are organized and dynamic structures created by an assembly of immune cells around the sites of infection in the lungs to locally restrict the bacterial growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of phenotypic surface markers. However, very few antibodies are available for model animals used in tuberculosis research, such as non-human primates and rabbits; secreted immunological markers such as cytokines cannot be imaged in situ using antibodies; and traditional phenotypic surface markers do not provide sufficient resolution for the detection of many subtypes and differentiation states of immune cells. Using single-molecule fluorescent in situ hybridization (smFISH) and its derivatives, amplified smFISH (ampFISH) and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of expression of these markers in single cells in situ. A quantitative analysis of combinatorial expressions of these markers allowed us to classify the cells into several subtypes and chart their distributions within granulomas. For one mRNA target, HIF-1α, we were able to image its mRNA and protein in the same cells, demonstrating the specificity of probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.
0

Immune Responses to Mycobacterium tuberculosis Infection in the Liver of Diabetic Mice

Ali Badaoui et al.Jun 20, 2024
Individuals with uncontrolled diabetes are highly susceptible to tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) infection. Novel treatments for TB are needed to address the increased antibiotic resistance and hepatoxicity. Previous studies showed that the administration of liposomal glutathione (L-GSH) can mitigate oxidative stress, bolster a granulomatous response, and diminish the M. tb burden in the lungs of M. tb-infected mice. Nonetheless, the impact of combining L-GSH with conventional TB treatment (RIF) on the cytokine levels and granuloma formation in the livers of diabetic mice remains unexplored. In this study, we evaluated hepatic cytokine profiles, GSH, and tissue pathologies in untreated and L-GSH, RIF, and L-GSH+RIF treated diabetic (db/db) M. tb-infected mice. Our results indicate that treatment of M. tb-infected db/db mice with L-GSH+RIF caused modulation in the levels of pro-inflammatory cytokines and GSH in the liver and mitigation in the granuloma size in hepatic tissue. Supplementation with L-GSH+RIF led to a decrease in the M. tb burden by mitigating oxidative stress, promoting the production of pro-inflammatory cytokines, and restoring the cytokine balance. These findings highlight the potential of L-GSH+RIF combination therapy for addressing active EPTB, offering valuable insights into innovative treatments for M. tb infections.