ES
Elisa Stanchina
Author with expertise in mTOR Signaling in Growth and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
68
(84% Open Access)
Cited by:
20,741
h-index:
85
/
i10-index:
202
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A microRNA component of the p53 tumour suppressor network

Lin He et al.Jun 6, 2007
The tumour suppressor p53 is the most commonly mutated gene in human cancers, and probably nearly all tumours have a lesion somewhere in this pathway. The p53 network is activated in response to numerous insults to restrain inappropriate cell proliferation either via growth arrest or cell death. MicroRNAs (miRNAs) are increasingly recognized for playing important parts in cancer, but little is know about how miRNA expression is regulated. Now a miRNA component of the p53 tumour suppressor network has been identified: p53 directly activates the transcription of the miR-34 family of miRNAs, which themselves suppress cell proliferation. Though dozens of p53 targets are known in mammals, miR-34 is unusual in that it is also present in Drosophila and the nematode worm C. elegans. This suggests that the link between p53 and miR-34 may have arisen early in the evolution of the p53 network. The tumour suppressor p53 directly activates the transcription of family of microRNAs, miR-34 family, which themselves suppress cell proliferation. The study also identifies miR-34 target genes that have roles in cell cycle progression. A global decrease in microRNA (miRNA) levels is often observed in human cancers1,2, indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wild-type and p53-deficient cells. Here we describe a family of miRNAs, miR-34a–c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation.
0
Citation2,596
0
Save
0

HER2 Amplification: A Potential Mechanism of Acquired Resistance to EGFR Inhibition in EGFR-Mutant Lung Cancers That Lack the Second-Site EGFRT790M Mutation

Ken Takezawa et al.Sep 6, 2012
Abstract EGF receptor (EGFR)–mutant lung cancers eventually become resistant to treatment with EGFR tyrosine kinase inhibitors (TKI). The combination of EGFR-TKI afatinib and anti-EGFR antibody cetuximab can overcome acquired resistance in mouse models and human patients. Because afatinib is also a potent HER2 inhibitor, we investigated the role of HER2 in EGFR-mutant tumor cells. We show in vitro and in vivo that afatinib plus cetuximab significantly inhibits HER2 phosphorylation. HER2 overexpression or knockdown confers resistance or sensitivity, respectively, in all studied cell line models. FISH analysis revealed that HER2 was amplified in 12% of tumors with acquired resistance versus only 1% of untreated lung adenocarcinomas. Notably, HER2 amplification and EGFRT790M were mutually exclusive. Collectively, these results reveal a previously unrecognized mechanism of resistance to EGFR-TKIs and provide a rationale to assess the status and possibly target HER2 in EGFR-mutant tumors with acquired resistance to EGFR-TKIs. Significance: Because all EGFR-mutant lung adenocarcinomas eventually develop resistance to TKI therapy, understanding mechanisms of acquired resistance may improve clinical outcomes. These results implicate HER2 as a novel protein involved in the sensitivity or resistance of EGFR-mutant lung cancer and provide a rationale to assess the status of and possibly target HER2 in such tumors. Cancer Discov; 2(10); 922–33. ©2012 AACR. Read the Commentary on this article by Blakely and Bivona, p. 872. This article is highlighted in the In This Issue feature, p. 857.
0
Citation628
0
Save
0

ARN-509: A Novel Antiandrogen for Prostate Cancer Treatment

Nicola Clegg et al.Jan 21, 2012
Abstract Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR pathway–targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor that is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics, and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/d of ARN-509, whereas the same response required 100 mg/kg/d of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer. Cancer Res; 72(6); 1494–503. ©2012 AACR.
0
Citation614
0
Save
0

In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system

Danilo Maddalo et al.Oct 21, 2014
The CRISPR/Cas system has been used to induce the Eml4–Alk chromosomal inversion in mice, a characteristic chromosomal rearrangement seen in human non-small cell lung cancers; the mice developed lung cancer and responded to the ALK inhibitor crizotinib, which is used to treat lung cancer patients with the EML4–ALK rearrangement; this general strategy can be used to engineer other disease-associated chromosomal rearrangements in mice and potentially in other organisms. The bacterial CRISPR/Cas9 system allows rapid and precise genome editing of somatic cells and is proving a useful tool for the generation of mouse models of human disease. Two groups reporting in this issue of Nature have now used the technique to introduce genetic alterations found in human lung tumours into the lungs of mice. Danilo Maddalo et al. introduce the Eml4–Alk rearrangement into mouse lung and find that the resulting EML4–ALK fusion protein drives the development of lung tumours with histopathology similar to that seen in human lung cancers carrying this alteration. Moreover, they show that an inhibitor of the ALK kinase leads to tumour regression. Francisco Sànchez-Rivera et al. show that loss-of-function of several known tumour suppressor genes cooperates with other genetic alterations in promoting the development of lung cancer. Different combinations of genetic alterations cause lung tumours with distinct molecular and histopathological features. These studies demonstrate the power of the CRISPR/Cas9 system to probe the function of putative oncogenes and tumour suppressor genes in mouse models more rapidly than previous approaches. Chromosomal rearrangements have a central role in the pathogenesis of human cancers and often result in the expression of therapeutically actionable gene fusions1. A recently discovered example is a fusion between the genes echinoderm microtubule-associated protein like 4 (EML4) and anaplastic lymphoma kinase (ALK), generated by an inversion on the short arm of chromosome 2: inv(2)(p21p23). The EML4–ALK oncogene is detected in a subset of human non-small cell lung cancers (NSCLC)2 and is clinically relevant because it confers sensitivity to ALK inhibitors3. Despite their importance, modelling such genetic events in mice has proven challenging and requires complex manipulation of the germ line. Here we describe an efficient method to induce specific chromosomal rearrangements in vivo using viral-mediated delivery of the CRISPR/Cas9 system to somatic cells of adult animals. We apply it to generate a mouse model of Eml4–Alk-driven lung cancer. The resulting tumours invariably harbour the Eml4–Alk inversion, express the Eml4–Alk fusion gene, display histopathological and molecular features typical of ALK+ human NSCLCs, and respond to treatment with ALK inhibitors. The general strategy described here substantially expands our ability to model human cancers in mice and potentially in other organisms.
0
Citation592
0
Save
0

The Regulation of AMPK β1, TSC2, and PTEN Expression by p53: Stress, Cell and Tissue Specificity, and the Role of These Gene Products in Modulating the IGF-1-AKT-mTOR Pathways

Zhaohui Feng et al.Apr 1, 2007
The insulin-like growth factor 1 (IGF-1)-AKT-mTOR pathways sense the availability of nutrients and mitogens and respond by signaling for cell growth and division. The p53 pathway senses a variety of stress signals which will reduce the fidelity of cell growth and division, and responds by initiating cell cycle arrest, senescence, or apoptosis. This study explores four p53-regulated gene products, the beta1 and beta2 subunits of the AMPK, which are shown for the first time to be regulated by the p53 protein, TSC2, PTEN, and IGF-BP3, each of which negatively regulates the IGF-1-AKT-mTOR pathways after stress. These gene products are shown to be expressed under p53 control in a cell type and tissue-specific fashion with the TSC2 and PTEN proteins being coordinately regulated in those tissues that use insulin-dependent energy metabolism (skeletal muscle, heart, white fat, liver, and kidney). In addition, these genes are regulated by p53 in a stress signal-specific fashion. The mTOR pathway also communicates with the p53 pathway. After glucose starvation of mouse embryo fibroblasts, AMPK phosphorylates the p53 protein but does not activate any of the p53 responses. Upon glucose starvation of E1A-transformed mouse embryo fibroblasts, a p53-mediated apoptosis ensues. Thus, there is a great deal of communication between the p53 pathway and the IGF-1-AKT and mTOR pathways.
Load More