LC
Ling Cai
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1
h-index:
20
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Mitochondrial metabolism in primary and metastatic human kidney cancers

Divya Bezwada et al.Feb 7, 2023
Summary Most kidney cancers display evidence of metabolic dysfunction 1–4 but how this relates to cancer progression in humans is unknown. We used a multidisciplinary approach to infuse 13 C-labeled nutrients during surgical tumour resection in over 70 patients with kidney cancer. Labeling from [U- 13 C]glucose varies across cancer subtypes, indicating that the kidney environment alone cannot account for all metabolic reprogramming in these tumours. Compared to the adjacent kidney, clear cell renal cell carcinomas (ccRCC) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in organotypic slices cultured ex vivo, indicating that suppressed labeling is tissue intrinsic. Infusions of [1,2- 13 C]acetate and [U- 13 C]glutamine in patients, coupled with respiratory flux of mitochondria isolated from kidney and tumour tissue, reveal primary defects in mitochondrial function in human ccRCC. However, ccRCC metastases unexpectedly have enhanced labeling of TCA cycle intermediates compared to primary ccRCCs, indicating a divergent metabolic program during ccRCC metastasis in patients. In mice, stimulating respiration in ccRCC cells is sufficient to promote metastatic colonization. Altogether, these findings indicate that metabolic properties evolve during human kidney cancer progression, and suggest that mitochondrial respiration may be limiting for ccRCC metastasis but not for ccRCC growth at the site of origin.
1

Electron transport chain inhibition increases cellular dependence on purine transport and salvage

Zheng Wu et al.May 11, 2023
SUMMARY Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5’ phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.
0

An interactive web application for exploring human plasma and fibroblast metabolomics data from patients with inborn errors of metabolism

Ling Cai et al.Dec 12, 2023
Abstract Metabolomic profiling is instrumental in understanding the systemic and cellular impact of inborn errors of metabolism (IEMs), monogenic disorders caused by pathogenic genomic variants in genes involved in metabolism. This study encompasses untargeted metabolomics analysis of plasma from 474 individuals and fibroblasts from 67 subjects, incorporating healthy controls, patients with 65 different monogenic diseases, and numerous undiagnosed cases. We introduce a web application designed for the in-depth exploration of this extensive metabolomics database. The application offers a user-friendly interface for data review, download, and detailed analysis of metabolic deviations linked to IEMs at the level of individual patients or groups of patients with the same diagnosis. It also provides interactive tools for investigating metabolic relationships and offers comparative analyses of plasma and fibroblast profiles. This tool emphasizes the metabolic interplay within and across biological matrices, enriching our understanding of metabolic regulation in health and disease. As a resource, the application provides broad utility in research, offering novel insights into metabolic pathways and their alterations in various disorders.
3

Induced Degradation of Lineage-specific Oncoproteins Drives the Selective PARP1 Inhibitor Toxicity in Small Cell Lung Cancer

Chiho Kim et al.Nov 3, 2022
Abstract A subset of small cell lung cancer (SCLC) shows clinically relevant response to PARP1 inhibitors (PARPi). However, BRCA1/2 mutations are not commonly found in SCLC, and the underlying mechanism(s) of PARPi sensitivity in SCLC is poorly understood. We performed quantitative proteomic analyses and identified proteomic changes that signify PARPi responses in a large panel of molecularly annotated patient-derived SCLC lines. We found that the toxicity of PARPi in SCLC could be explained, at least in part, by the PARPi-induced degradation of key lineage-specific oncoproteins including ASCL1, NEUROD1, POU2F3, KDM4A, and KDM5B. Importantly, the degradation of these SCLC lineage-specific oncoproteins could also be induced by commonly used chemotherapeutic agents. Biochemical experiments showed that PARPi-induced activation of E3 ligases (e.g., HUWE1 and RNF8) mediated the ubiquitin-proteasome system (UPS)-dependent degradation of these oncoproteins. Interestingly, although PARPi resulted in a general DNA damage response in SCLC cells, this signal is sensed by different SCLC cell lines to generate a cell-specific response. The dissection of the cell-specific oncoprotein degradation response led to the identification of potentially predictive biomarkers for PARPi in SCLC. The combination of PARPi and agents targeting these pathways led to dramatically improved cytotoxicity in SCLC. PARPi-induced degradation of lineage-specific oncoproteins therefore represents a novel mechanism to explain the efficacy of PARPi in tumors without BRCA1/2 mutations. Highlights Quantitative mass spectrometric analysis identifies proteomic changes associated with PARPi treatment in a large panel of SCLC cell lines. PARPi leads to the degradation of lineage-specific oncoproteins (e.g., ASCL1 and KDM4A) via the DNA damage responsive E3 ubiquitin ligases (e.g., HUWE1 and RNF8). A combination of PARPi and agents targeting the lineage-specific oncoproteins offers a more complete and durable therapeutic response in SCLC, compared to PARPi alone. Expression of lineage-specific oncoproteins and the associated ubiquitination machinery are predictive biomarkers for PARPi-induced cytotoxicity in SCLC.