KV
Katharina Ven
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
4
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

Seipin traps triacylglycerols to facilitate their nanoscale clustering in the ER membrane

Xavier Prasanna et al.Oct 26, 2020
+5
S
V
X
Abstract Seipin is a disk-like oligomeric ER protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane. We identify Ser166 in the α3 helix as a favored TAG occupancy site and show that mutating it compromises the ability of seipin complexes to sequester TAG in silico and to promote TAG transfer to LDs in cells. While seipin-S166D mutant colocalizes poorly with promethin, the association of nascent wild-type seipin complexes with promethin is promoted by TAGs. Together, these results suggest that seipin traps TAGs via its luminal hydrophobic helices, serving as a catalyst for seeding the TAG cluster from dissolved monomers inside the seipin ring, thereby generating a favorable promethin binding interface.
18
Citation4
0
Save
1

Specialized actin nanoscale layers control focal adhesion turnover

Reena Kumari et al.Feb 15, 2023
+9
M
K
R
SUMMARY Focal adhesions (FAs) connect inner workings of the cell to the extracellular matrix to control cell adhesion, migration, and mechanosensing 1,2 . Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton 3,4,5 . However, cellular processes rely on precisely-regulated FA turnover, but the molecular machineries that control FA assembly and disassembly have remained elusive. By using super-resolution iPALM microscopy, we identified two unprecedented nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments beneath the previously identified ‘actin-regulatory layer’ are critical for adhesion maturation and controlled cell motility, whereas the Tpm3.2-actin filament layer towards the bottom of FA facilitates adhesion disassembly. Mechanistically, Tpm3.2 stabilizes KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Loss of Tpm3.2 leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during cell migration. Thus, FAs are composed of at least three distinct actin filament layers, each having specific roles in coupling of adhesion to the cytoskeleton, or in controlling adhesion dynamics. In a broader context, these findings demonstrate how distinct actin filament populations can co-exist and perform specific functions within a defined cellular compartment.