AA
Alexandru Avram
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
5
h-index:
19
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology

Kadharbatcha Saleem et al.Nov 23, 2021
+4
D
A
K
Abstract Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template “SC21” from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.
1
Paper
Citation3
0
Save
2

Multimodal anatomical mapping of subcortical regions in Marmoset monkeys using high-resolution MRI and matched histology with multiple stains

Kadharbatcha Saleem et al.Mar 31, 2023
+3
C
A
K
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
2
Citation2
0
Save
0

A framework for spatial normalization and voxelwise analysis of diffusion propagators in multiple MAP-MRI data sets

Alexandru Avram et al.Jul 9, 2019
+11
M
A
A
We describe a pipeline for constructing a study-specific template of diffusion propagators measured with mean apparent propagator (MAP) MRI that supports direct voxelwise analysis of differences between propagators across multiple data sets. The pipeline leverages the fact that MAP-MRI is a generalization of diffusion tensor imaging (DTI) and combines simple and robust processing steps from existing tensor-based image registration methods. First, we compute a DTI study template which provides the reference frame and scaling parameters needed to construct a standardized set of MAP-MRI basis functions at each voxel in template space. Next, we transform each diffusion data set, including diffusion weighted images (DWIs) and gradient directions, from native to template space using the corresponding tensor-based deformation fields. Finally, we fit MAP coefficients in template space to the transformed DWIs of each subject using the standardized template of MAP basis functions. The consistency of MAP basis functions across all data sets in template space allows us to: 1. compute a template of propagators by directly averaging MAP coefficients and 2. quantify voxelwise differences between co-registered propagators using the angular dissimilarity, or a probability distance metric, such as the Jensen-Shannon Divergence. We illustrate the application of this method by generating a template of MAP propagators for a cohort of healthy volunteers and show a proof-of-principle example of how this pipeline may be used to detect subtle differences between propagators in a single-subject longitudinal clinical data set. The ability to standardize and analyze multiple clinical MAP-MRI data sets could improve assessments in cross-sectional and single-subject longitudinal clinical studies seeking to detect subtle microstructural changes, such as those occurring in mild traumatic brain injury (mTBI), or during the early stages of neurodegenerative diseases, or cancer.
0

The Subcortical Atlas of the Marmoset (SAM) monkey based on high-resolution MRI and histology

Kadharbatcha Saleem et al.Jan 8, 2024
+2
D
A
K
Abstract A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications for anatomical, functional, and clinical studies. We first generated a S ubcortical A tlas of the M armoset, called the “SAM,” from 251 delineated subcortical regions (e.g., thalamic subregions, etc.) derived from the high-resolution MAP-MRI, T2W, and MTR images ex vivo . We then confirmed the location and borders of these segmented regions in MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within AFNI. Tracing and validating these important deep brain structures in 3D improves neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, fMRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.
0

Water Diffusion in the Live Human Brain is Gaussian at the Mesoscale

Kulam Magdoom et al.Apr 14, 2024
+2
T
A
K
Abstract Imaging the live human brain at the mesoscopic scale is a desideratum in basic and clinical neurosciences. Despite the promise of diffusion MRI, the lack of an accurate model relating the measured signal and the associated microstructure has hampered its success. The widely used diffusion tensor MRI (DTI) model assumes an anisotropic Gaussian diffusion process in each voxel, but lacks the ability to capture intravoxel heterogeneity. This study explores the extension of the DTI model to mesoscopic length scales by use of the diffusion tensor distribution (DTD) model, which assumes a Gaussian diffusion process in each subvoxel. DTD MRI has shown promise in addressing some limitations of DTI, particularly in distinguishing among different types of brain cancers and elucidating multiple fiber populations within a voxel. However, its validity in live brain tissue has never been established. Here, multiple diffusion-encoded (MDE) data were acquired in the living human brain using a 3 Tesla MRI scanner with large diffusion weighting factors. Two different diffusion times (Δ = 37, 74 ms) were employed, with other scanning parameters fixed to assess signal decay differences. In vivo diffusion-weighted signals in gray and white matter were nearly identical at the two diffusion times. Fitting the signals to the DTD model yielded indistinguishable results, except in the cerebrospinal fluid (CSF)-filled voxels likely due to pulsatile flow. Overall, the study supports the time invariance of water diffusion at the mesoscopic scale in live brain parenchyma, extending the validity of the anisotropic Gaussian diffusion model in clinical brain imaging.
3

A Novel Framework for In-vivo Diffusion Tensor Distribution MRI of the Human Brain

Kulam Magdoom et al.Aug 15, 2022
+2
J
A
K
Abstract Neural tissue microstructure plays an important role in developmental, physiological and pathophysiological processes. Diffusion tensor distribution (DTD) MRI helps probe heterogeneity at the mesoscopic length scale, orders of magnitude smaller than the nominal MRI voxel size, by describing water diffusion within a voxel using an ensemble of non-exchanging compartments characterized by a probability density function of diffusion tensors. In this study, we provide a new framework for acquiring tensor encoded diffusion weighted images (DWIs) and estimating DTD from them for in-vivo human brain imaging. We interfused pulsed field gradients (iPFG) in a single spin echo to generate arbitrary b-tensors of rank one, two, or three without introducing concomitant gradient artifacts. Employing well-defined gradient pulse duration and mixing/diffusion times in our diffusion preparation, we show that iPFG retains salient features of traditional multiple-PFG (mPFG) sequence while overcoming some of its implementation issues thereby extending its applications beyond DTD MRI. We assume DTD is a maximum entropy tensor-variate normal distribution whose tensor random variables are constrained to be positive definite (CNTVD) to ensure their physicality. In each voxel, the second-order mean and fourth-order covariance tensors of the DTD are estimated using a Monte Carlo method that synthesizes micro-diffusion tensors with corresponding size, shape and orientation distributions to best fit the measured DWIs. From these tensors we obtain the mean diffusivity (MD) spectrum, spectrum of diffusion tensor shapes, microscopic orientation distribution function ( µ ODF), and microscopic fractional anisotropy ( µ FA) which disentangle the underlying heterogeneity within a voxel. Using DTD derived µ ODF, we introduce a new method to perform fiber tractography capable of resolving complex fiber configurations. The results obtained in the live human brain showed microscopic anisotropy in various gray and white matter regions and skewed MD distribution in cerebellar gray matter not observed previously. DTD MRI tractography captured complex white matter fiber organization consistent with known anatomy. DTD MRI also resolved some degeneracies associated with diffusion tensor imaging (DTI) and identified the source of microscopic anisotropy which may help improve the diagnosis of various neurological diseases and disorders.