WG
Wei Gan
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
236
h-index:
29
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Cannabis use and risk of schizophrenia: a Mendelian randomization study

Julien Vaucher et al.Dec 7, 2016
Cannabis use is observationally associated with an increased risk of schizophrenia, however whether the relationship is causal is not known. To determine the nature of the association between cannabis use on risk of schizophrenia using Mendelian randomization (MR) analysis, we used ten genetic variants previously identified to associate with cannabis use in 32,330 individuals. Genetic variants were used in a MR analyses of the association of genetically determined cannabis on risk of schizophrenia in 34,241 cases and 45,604 controls from predominantly European descent. Estimates from MR were compared to a metaanalysis of observational studies reporting effect estimates for ever use of cannabis and risk of schizophrenia or related disorders. Genetically determined use of cannabis was associated with increased risk of schizophrenia (OR of schizophrenia for users vs. non-users of cannabis: 1.37; 95%CI, 1.09 to 1.67; P-value=0.007). The corresponding estimate from observational analysis was 1.50 (95% CI, 1.10 to 2.00; P-value for heterogeneity = 0.88). The genetic instrument did not show evidence of pleiotropy on MR-Egger (Egger test, P-value=0.292) nor on multivariable MR accounting for tobacco exposure (OR of schizophrenia for users vs. nonusers of cannabis, adjusted for ever vs. never smoker: 1.41; 95% CI, 1.09-1.83). Furthermore, the causal estimate remained robust to sensitivity analyses. These findings strongly support a causal association between genetically determined use of cannabis and risk of schizophrenia. Such robust evidence may inform public health message about the risks of cannabis use, especially regarding its potential mental health consequences.
0

Refining The Accuracy Of Validated Target Identification Through Coding Variant Fine-Mapping In Type 2 Diabetes

Anubha Mahajan et al.May 31, 2017
Identification of coding variant associations for complex diseases offers a direct route to biological insight, but is dependent on appropriate inference concerning the causal impact of those variants on disease risk. We aggregated coding variant data for 81,412 type 2 diabetes (T2D) cases and 370,832 controls of diverse ancestry, identifying 40 distinct coding variant association signals (at 38 loci) reaching significance (p<2.2x10-7). Of these, 16 represent novel associations mapping outside known genome-wide association study (GWAS) signals. We make two important observations. First, despite a threefold increase in sample size over previous efforts, only five of the 40 signals are driven by variants with minor allele frequency <5%, and we find no evidence for low-frequency variants with allelic odds ratio >1.29. Second, we used GWAS data from 50,160 T2D cases and 465,272 controls of European ancestry to fine-map these associated coding variants in their regional context, with and without additional weighting to account for the global enrichment of complex trait association signals in coding exons. At the 37 signals for which we attempted fine-mapping, we demonstrate convincing support (posterior probability >80% under the 'annotation-weighted' model) that coding variants are causal for the association at 16 (including novel signals involving POC5 p.His36Arg, ANKH p.Arg187Gln, WSCD2 p.Thr113Ile, PLCB3 p.Ser778Leu, and PNPLA3 p.Ile148Met). However, at 13 of the 37 loci, the associated coding variants represent 'false leads' and naïve analysis could have led to an erroneous inference regarding the effector transcript mediating the signal. Accurate identification of validated targets is dependent on correct specification of the contribution of coding and non-coding mediated mechanisms at associated loci.
0

PROTEIN-CODING VARIANTS IMPLICATE NOVEL GENES RELATED TO LIPID HOMEOSTASIS CONTRIBUTING TO BODY FAT DISTRIBUTION

Andrew Hattersley et al.Jun 30, 2018
Body fat distribution is a heritable risk factor for a range of adverse health consequences, including hyperlipidemia and type 2 diabetes. To identify protein-coding variants associated with body fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, we analyzed 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries for discovery and 132,177 independent European-ancestry individuals for validation. We identified 15 common (minor allele frequency, MAF ≥ 5%) and 9 low frequency or rare (MAF < 5%) coding variants that have not been reported previously. Pathway/gene set enrichment analyses of all associated variants highlight lipid particle, adiponectin level, abnormal white adipose tissue physiology, and bone development and morphology as processes affecting fat distribution and body shape. Furthermore, the cross-trait associations and the analyses of variant and gene function highlight a strong connection to lipids, cardiovascular traits, and type 2 diabetes. In functional follow-up analyses, specifically in Drosophila RNAi-knockdown crosses, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). By examining variants often poorly tagged or entirely missed by genome-wide association studies, we implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.