PX
Peng Xiong
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

RNA tertiary structure modeling with BRiQ potential in CASP15

Ke Chen et al.May 28, 2023
P
Y
S
K
Abstract We describe the modeling method for RNA tertiary structures employed by team AIchemy_RNA2 in the 15 th Critical Assessment of Protein Structure Prediction (CASP15). The method consists of the following steps. Firstly, secondary structure information was derived from various manually-verified sources. With this information, the full length RNA was fragmented into structural motifs. The structures of each motif were predicted and then assembled into the full structure. To reduce the searching conformational space, a RNA structure was organized into an optimal base folding tree. And to further improve the sampling efficiency, the energy surface was smoothed at high temperatures during the Monte Carlo sampling to make it easier to move across the energy barrier. The statistical potential energy function BRiQ was employed during Monte Carlo energy optimization.
1
Citation2
0
Save
0

Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity

Zhe Zhang et al.Jun 21, 2019
+3
T
J
Z
Despite the transcription of noncoding RNAs in 75% of the human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and inefficient 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of <5x10^4 single-to-triple mutants is sufficient to infer all 26 including nonhelical and noncanonical base pairs at the precision of a single false positive. The accurate inference, further confirmed by a twister ribozyme, is resulted from covariation analysis by utilizing both functional and nonfunctional variants for unsupervised learning, followed by restrained optimization. The result highlights the usefulness of deep mutational scanning for high-accuracy structural inference.
1

Resurrecting self-cleaving mini-ribozymes from 40-million-year-old LINE-1 elements in human genome

Zhe Zhang et al.Apr 6, 2021
+2
J
J
Z
Abstract Long Interspersed Nuclear Element (LINE) retrotransposons play an important role in genomic innovation as well as genomic instability in many eukaryotes including human. Random insertions and extinction through mutational inactivation make them perfectly time-stamped “DNA fossils”. Here, we investigated the origin of a self-cleaving ribozyme in 5’ UTR of LINE-1. We showed that this ribozyme only requires 35 nucleotides for self-cleavage with a simple but previously unknown secondary-structure motif that was determined by deep mutational scanning and covariation analysis. Structure-based homology search revealed the existence of this mini-ribozyme in anthropoids but not in prosimians. In human, the most homologs of this mini-ribozyme were found in lineage L1PA6-10 but essential none in more recent L1PA1-2 or more ancient L1PA13-15. We resurrected mini-ribozymes according to consensus sequences and confirmed that mini-ribozymes were active in L1PA10 and L1PA8 but not in L1PA7 and more recent lineages. The result paints a consistent picture for the emergence of the active ribozyme around 40 million years ago, just before the divergence of the new world monkeys (Platyrrhini) and old-world monkeys (Catarrhini). The ribozyme, however, subsequently went extinct after L1PA7 emerged around 30 million years ago with a deleterious mutation. This work uncovers the rise and fall of the mini-LINE-1 ribozyme recorded in the “DNA fossils” of our own genome. More importantly, this ancient, naturally trans-cleaving ribozyme (after removing the non-functional stem loop) may find its modern usage in bioengineering and RNA-targeting therapeutics.