DB
David Bannerman
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
30
(70% Open Access)
Cited by:
4,121
h-index:
72
/
i10-index:
177
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ventral hippocampal lesions affect anxiety but not spatial learning

David Bannerman et al.Feb 1, 2003
Rats with cytotoxic ventral hippocampal lesions which removed approximately 50% of the hippocampus (including dentate gyrus) starting from the temporal pole, displayed a reduction in freezing behaviour following the delivery of an unsignalled footshock in an operant chamber. This was more plausibly a result of reduced susceptibility to fear than a result of a lesion-induced increase in general motor activity. There was no consistent difference between sham and lesioned animals in spontaneous locomotor activity, or locomotion following acute or chronic treatment with amphetamine. In contrast, ventral hippocampal lesioned animals were quicker to pass from the black to the white box during a modified version of the light/dark exploration test, and were quicker to begin eating during tests of hyponeophagia. Furthermore, rats with ventral hippocampal lesions defecated less than their sham counterparts both during open field testing and in extinction sessions following contextual conditioning. In contrast to these clear lesion effects, there were no signs of any spatial learning impairment either in the watermaze or on the elevated T-maze. Taken together these results suggest that the ventral hippocampus may play a role in a brain system (or systems) associated with fear and/or anxiety, and provide further evidence for a distinct specialisation of function along the septotemporal axis of the hippocampus.
0

Functional Specialization within Medial Frontal Cortex of the Anterior Cingulate for Evaluating Effort-Related Decisions

Mark Walton et al.Jul 23, 2003
The rat medial frontal cortex (MFC) has been implicated in allowing animals to work harder to receive larger rewards. However, it is unknown what role the individual MFC regions [anterior cingulate cortex (ACC) and prelimbic-infralimbic cortex (PL-IL)] play in such decision making. To investigate this, we trained rats on a T-maze cost-benefit task with two possible courses of action, shown previously to be affected by complete MFC lesions. One response involved climbing a 30 cm barrier to obtain a large quantity of reward (high cost-high reward), whereas the other had a lower energetic demand but also a smaller reward gain (low cost-low reward). Before surgery, all animals preferred to select the high cost-high reward option. However, after excitotoxic ACC lesions, there was a complete reversal of behavior, with the ACC group selecting the low cost-low reward response on nearly every trial. In contrast, both control animals and rats with PL-IL lesions continued to choose to climb the barrier for the larger reward. When the same rats were tested on a delayed match-to-sample paradigm however, it was the PL-IL group that was significantly impaired at learning the response rule, with the performance of ACC rats being comparable with controls. This double dissociation indicates that the ACC is the important region within the MFC when evaluating how much effort to expand for a specific reward.
0
Paper
Citation489
0
Save
0

Motor Skill Learning Induces Changes in White Matter Microstructure and Myelination

Cassandra Sampaio‐Baptista et al.Dec 11, 2013
Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry. Seventy-two adult (male) rats were randomly assigned to one of three conditions (skilled reaching, unskilled reaching, and caged control). After 11 d of training, postmortem diffusion MRI revealed significantly higher FA in the skilled reaching group compared with the control groups, specifically in the WM subjacent to the sensorimotor cortex contralateral to the trained limb. In addition, within the skilled reaching group, FA across widespread regions of WM in the contralateral hemisphere correlated significantly with learning rate. Immunohistological analysis conducted on a subset of 24 animals (eight per group) revealed significantly increased myelin staining in the WM underlying motor cortex in the hemisphere contralateral (but not ipsilateral) to the trained limb for the skilled learning group versus the control groups. Within the trained hemisphere (but not the untrained hemisphere), myelin staining density correlated significantly with learning rate. Our results suggest that learning a novel motor skill induces structural change in task-relevant WM pathways and that these changes may in part reflect learning-related increases in myelination.
Load More