MT
Ming-Feng Tsai
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
3
h-index:
17
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Structure and function of the human mitochondrial MRS2 channel

He Zhihui et al.Aug 15, 2023
+5
C
H
H
Abstract The human Mitochondrial RNA Splicing 2 protein (MRS2) has been implicated in Mg 2+ transport across mitochondrial inner membranes, thus playing an important role in Mg 2+ homeostasis critical for mitochondrial integrity and function. However, the molecular mechanisms underlying its fundamental channel properties such as ion selectivity and regulation remain unclear. Here, we present structural and functional investigation of MRS2. Cryo-electron microscopy structures in various ionic conditions reveal a pentameric channel architecture and the molecular basis of ion permeation and potential regulation mechanisms. Electrophysiological analyses demonstrate that MRS2 is a Ca 2+ -regulated, non-selective channel permeable to Mg 2+ , Ca 2+ , Na + and K + , which contrasts with its prokaryotic ortholog, CorA, operating as a Mg 2+ -gated Mg 2+ channel. Moreover, a conserved arginine ring within the pore of MRS2 functions to restrict cation movements, likely preventing the channel from collapsing the proton motive force that drives mitochondrial ATP synthesis. Together, our results provide a molecular framework for further understanding MRS2 in mitochondrial function and disease.
3
Citation3
0
Save
1

Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex

Yung-Chi Tu et al.Jun 6, 2023
M
F
Y
Abstract The mitochondrial Ca 2+ uniporter mediates the crucial cellular process of mitochondrial Ca 2+ uptake, which regulates cell bioenergetics, intracellular Ca 2+ signaling, and cell death initiation. The uniporter contains the pore-forming MCU subunit, an EMRE protein that binds to MCU, and the regulatory MICU1 subunit, which can dimerize with MICU1 or MICU2 and under resting cellular [Ca 2+ ] occludes the MCU pore. It has been known for decades that spermine, which is ubiquitously present in animal cells, can enhance mitochondrial Ca 2+ uptake, but the underlying mechanisms remain unclear. Here, we show that spermine exerts dual modulatory effects on the uniporter. In physiological concentrations of spermine, it enhances uniporter activity by breaking the physical interactions between MCU and the MICU1-containing dimers to allow the uniporter to constitutively take up Ca 2+ even in low [Ca 2+ ] conditions. This potentiation effect does not require MICU2 or the EF-hand motifs in MICU1. When [spermine] rises to millimolar levels, it inhibits the uniporter by targeting the pore region in a MICU-independent manner. The MICU1-dependent spermine potentiation mechanism proposed here, along with our previous finding that cardiac mitochondria have very low MICU1, can explain the puzzling observation in the literature that mitochondria in the heart show no response to spermine.
2

MICU1 occludes MCU in the mitochondrial calcium uniporter complex

Chen-Wei Tsai et al.Nov 15, 2021
+2
A
Z
C
Abstract The mitochondrial calcium uniporter imports cytoplasmic Ca 2+ into the mitochondrial matrix to regulate cell bioenergetics, Ca 2+ signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an EMRE protein that binds to MCU, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking and unblocking the Ca 2+ pore. However, mitoplast patch-clamp experiments argue that MICU1 does not block Ca 2+ transport but instead potentiates MCU. To address this direct clash of proposed MICU1 function, we applied purified MICU1 to Ca 2+ -conducting MCU-EMRE subcomplexes in outside-out patches excised from Xenopus oocytes. MICU1 strongly inhibits Ca 2+ currents, and the inhibition is abolished by mutating an MCU-interacting K126 residue in MICU1. Further experiments show that MICU1 block was not observed in mitoplasts because MICU1 dissociates from the uniporter complex. These results firmly establish that MICU1 shuts the uniporter in resting cellular conditions.