DB
Diane Brooks
Author with expertise in Bacterial Biofilms and Quorum Sensing Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
0
h-index:
25
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Inhibition of PQS signaling by the Pf bacteriophage protein PfsE enhances viral replication in Pseudomonas aeruginosa

Caleb Schwartzkopf et al.Aug 26, 2023
+7
M
V
C
Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.Quorum sensing regulates phage defense in Pseudomonas aeruginosa . The Pf phage protein PfsE inhibits PQS-mediated quorum sensing by binding to the host enzyme PqsA, while also protecting against type IV pili-dependent phage infection. This dual inhibition strategy promotes Pf replication and safeguards the host from competing phages.
0

Characterization and genomic analysis of the Lyme disease spirochete bacteriophage φBB-1

Dominick Faith et al.Jan 9, 2024
+7
D
M
D
Lyme disease is a tick-borne infection caused by the spirochete
1

Tripartite interactions between filamentous Pf4 bacteriophage,Pseudomonas aeruginosa, and bacterivorous nematodes

Caleb Schwartzkopf et al.Oct 13, 2022
+6
M
A
C
Abstract The opportunistic pathogen Pseudomonas aeruginosa PAO1 is infected by the filamentous bacteriophage Pf4. Pf4 virions promote biofilm formation, protect bacteria from antibiotics, and modulate animal immune responses in ways that promote infection. Furthermore, strains cured of their Pf4 infection (ΔPf4) are less virulent in animal models of infection. Consistently, we find that strain ΔPf4 is less virulent in a Caenorhabditis elegans nematode infection model. However, our data indicate that PQS quorum sensing is activated and production of the pigment pyocyanin, a potent virulence factor, is enhanced in strain ΔPf4. The reduced virulence of ΔPf4 despite high levels of pyocyanin production may be explained by our finding that C. elegans mutants unable to sense bacterial pigments through the aryl hydrocarbon receptor are more susceptible to ΔPf4 infection compared to wild-type C. elegans . Collectively, our data support a model where suppression of quorum-regulated virulence factors by Pf4 allows P. aeruginosa to evade detection by innate host immune responses. Author Summary Pseudomonas aeruginosa is an opportunistic bacterial pathogen that infects wounds, lungs, and medical hardware. P. aeruginosa strains are often themselves infected by a filamentous virus (phage) called Pf. At sites of infection, filamentous Pf virions are produced that promote bacterial colonization and virulence. Here, we report that strains of P. aeruginosa cured of their Pf infection are less virulent in a Caenorhabditis elegans nematode infection model. We also report that PQS quorum sensing and production of the virulence factor pyocyanin are enhanced in P. aeruginosa strains cured of their Pf infection. Compared to wild-type C. elegans , nematodes unable to detect bacterial pigments via the aryl hydrocarbon receptor AhR were more susceptible to infection by Pf-free P. aeruginosa strains that over-produce pyocyanin. Collectively, this study supports a model where Pf phage suppress P. aeruginosa PQS quorum sensing and reduce pyocyanin production, allowing P. aeruginosa to evade AhR-mediated immune responses in C. elegans .
1

Longitudinal map of transcriptome changes in the Lyme pathogenBorrelia burgdorferiduring tick-borne transmission

Anne Sapiro et al.Nov 9, 2022
+9
P
D
A
ABSTRACT Borrelia burgdorferi ( Bb ), the causative agent of Lyme disease, adapts to vastly different environments as it cycles between tick vector and vertebrate host. During a tick bloodmeal, Bb alters its gene expression to prepare for vertebrate infection; however, the full range of transcriptional changes that occur over several days inside of the tick are technically challenging to capture. We developed an experimental approach to enrich Bb cells to longitudinally define their global transcriptomic landscape inside nymphal Ixodes scapularis ticks during a transmitting bloodmeal. We identified 192 Bb genes that substantially change expression over the course of the bloodmeal from one to four days after host attachment. The majority of upregulated genes encode proteins found at the cell envelope or proteins of unknown function, including 45 outer surface lipoproteins embedded in the unusual protein-rich coat of Bb . As these proteins may facilitate Bb interactions with the host, we utilized mass spectrometry to identify candidate tick proteins that physically associate with Bb . The Bb enrichment methodology along with the ex vivo Bb transcriptomes and candidate tick interacting proteins presented here provide a resource to facilitate investigations into key determinants of Bb priming and transmission during the tick stage of its unique transmission cycle.