DM
Daniel Minor
Author with expertise in Molecular Mechanisms of Ion Channels Regulation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(46% Open Access)
Cited by:
1,703
h-index:
46
/
i10-index:
68
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain

Filip Petegem et al.May 12, 2004
Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore.
0

Cryo-EM structures of the TMEM16A calcium-activated chloride channel

Shangyu Dang et al.Dec 1, 2017
Electron cryo-microscopy density maps of mouse TMEM16A reconstituted in nanodiscs or solubilized in detergent reveal two functional states of calcium-activated chloride channels. The diverse TMEM16 membrane protein family contains Ca(II)-activated chloride channels, lipid scramblases and cation channels. TMEM16A mediates chloride-ion permeation, which controls neuronal signalling, muscle contraction and numerous other physiological functions. In this issue of Nature, two groups have solved the structure of TMEM16A by using cryo-electron microscopy, providing insights into the function of this channel. Unlike other ligand-gated ion channels, the Ca(II) ion interacts with the pore directly, where a glycine residue acts as a flexible hinge to adjust calcium sensitivity. Raimund Dutzler and colleagues report the structure of the protein in both Ca(II)-free and Ca(II)-bound states, which shows how calcium binding facilitates the structural rearrangements involved in channel activation. In the second Letter, Lily Jan and colleagues present two functional states of TMEM16A in the glycolipid LMNG and in nanodiscs, with one and two Ca(II) ions bound, respectively. The closed conformation observed in nanodiscs is proposed to show channel rundown after prolonged Ca(II) activation. Calcium-activated chloride channels (CaCCs) encoded by TMEM16A1,2,3 control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system4,5,6,7. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores8,9. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase10,11,12, as well as subnanometre-resolution electron cryo-microscopy12. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca2+. Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.
71

EMC holdase:CaV1.2/CaVβ3 complex and CaV1.2 channel structures reveal CaV assembly and drug binding mechanisms

Zhou Chen et al.Oct 5, 2022
Abstract Voltage-gated ion channels (VGICs) comprise multiple structural units whose assembly is required for function 1,2 . There is scant structural understanding of how VGIC subunits assemble and whether chaperone proteins are required. High-voltage activated calcium channels (Ca V s) 3,4 are paradigmatic multi-subunit VGICs from electrically excitable tissues whose function and trafficking is powerfully shaped by interactions between pore-forming Ca V 1 or Ca V 2 Ca V α 1 3 and auxiliary Ca V β 5 , and Ca V α 2 δ subunits 6,7 . Here, we present cryo-EM structures of human brain and cardiac Ca V 1.2 bound with Ca V β 3 to a chaperone, the endoplasmic reticulum membrane protein complex (EMC) 8,9 , and of the isolated Ca V 1.2/Ca V β 3 /Ca V α 2 δ-1 channel. These provide an unprecedented view of an EMC holdase:client complex and define EMC sites, the TM and Cyto docks, whose interaction with the client channel cause partial extraction of a pore subunit and splay open the Ca V α 2 δ interaction site. The structures further identify the Ca V α 2 δ binding site for gabapentinoid anti-pain and anti-anxiety drugs 6 , show that EMC and Ca V α 2 δ channel interactions are mutually exclusive, and indicate that EMC to Ca V α 2 δ handoff involves a Ca 2+ -dependent step and ordering of multiple Ca V 1.2 elements. Together, the structures unveil a Ca V assembly intermediate and previously unknown EMC client binding sites that have broad implications for biogenesis of VGICs and other membrane proteins.
71
Citation2
0
Save
11

Definition of a saxitoxin (STX) binding code enables discovery and characterization of the Anuran saxiphilin family

Zhou Chen et al.Jun 10, 2022
Abstract American bullfrog (Rana castesbeiana) saxiphilin (RcSxph) is a high-affinity ‘toxin sponge’ protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX ‘recognition code’ enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of ten new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse Anurans separated by ∼140 million years of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related PSP toxins. Teaser A conserved STX recognition motif from frog and toad saxiphilins defines molecular principles of paralytic toxin binding.
11
Paper
Citation1
0
Save
1

Quaternary structure independent folding of voltage-gated ion channel pore domain subunits

Cristina Arrigoni et al.Aug 15, 2021
Abstract Every voltage-gated ion channel (VGIC) superfamily member has an ion conducting pore consisting of four pore domain (PD) subunits that are each built from a common plan comprising an antiparallel transmembrane helix pair, a short, obliquely positioned helix (the pore helix), and selectivity filter. The extent to which this structure, the VGIC-PD fold, relies on the extensive quaternary interactions observed in PD assemblies is unclear. Here, we present crystal structures of three bacterial voltage-gated sodium channel (BacNa v ) pores that adopt a surprising set of non-canonical quaternary structures and yet maintain the native tertiary structure of the PD monomer. This context-independent structural robustness demonstrates that the VGIC-PD fold, the fundamental VGIC structural building block, can adopt its native-like tertiary fold independent of native quaternary interactions. In line with this observation, we find that the VGIC-PD fold is not only present throughout the VGIC superfamily and other channel classes but has homologs in diverse transmembrane and soluble proteins. Characterization of the structures of two synthetic Fabs (sFabs) that recognize the VGIC-PD fold shows that such sFabs can bind purified full-length channels and indicates that non-canonical quaternary PD assemblies can occur in the context of complete VGICs. Together, our data demonstrate that the VGIC-PD structure can fold independently of higher-order assembly interactions and suggest that full-length VGIC PDs can access previously unknown non-canonical quaternary states. These PD properties have deep implications for understanding how the complex quaternary architectures of VGIC superfamily members are achieved and point to possible evolutionary origins of this fundamental VGIC structural element.
Load More