JB
Jöerg Bohlmann
Author with expertise in Biosynthesis and Engineering of Terpenoids
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(61% Open Access)
Cited by:
8,387
h-index:
43
/
i10-index:
231
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Norway spruce genome sequence and conifer genome evolution

Björn Nystedt et al.May 1, 2013
Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding. The draft genome of the Norway spruce (P. abies) is presented; this is the first gymnosperm genome to be sequenced and reveals a large genome size (20 Gb) resulting from the accumulation of transposable elements, and comparative sequencing of five other gymnosperm genomes provides insights into conifer genome evolution. The first draft gymnosperm genome, that of a Norway spruce (Picea abies), is published this week by the Spruce Genome Project consortium. The genome is from a tree originally collected in 1959 in eastern Jämtland, central Sweden. At 20 gigabases, the genome is more than a hundred times larger than that of the model plant species Arabidopsis, but the two contain a similar number of genes. The large genome size is the result of an accumulation of transposable elements. Comparative sequencing of five further gymnosperm genomes suggests that transposable element diversity is shared among extant conifers. The sequence data are available for public access from the ConGenIE website ( http://congenie.org/ ).
0
Citation1,344
0
Save
0

Methyl Jasmonate Induces Traumatic Resin Ducts, Terpenoid Resin Biosynthesis, and Terpenoid Accumulation in Developing Xylem of Norway Spruce Stems

Diane Martin et al.Jul 1, 2002
Abstract Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.
0
Paper
Citation511
0
Save
0

Terpenoid biomaterials

Jöerg Bohlmann et al.May 1, 2008
Summary Terpenoids (isoprenoids) encompass more than 40 000 structures and form the largest class of all known plant metabolites. Some terpenoids have well‐characterized physiological functions that are common to most plant species. In addition, many of the structurally diverse plant terpenoids may function in taxonomically more discrete, specialized interactions with other organisms. Historically, specialized terpenoids, together with alkaloids and many of the phenolics, have been referred to as secondary metabolites. More recently, these compounds have become widely recognized, conceptually and/or empirically, for their essential ecological functions in plant biology. Owing to their diverse biological activities and their diverse physical and chemical properties, terpenoid plant chemicals have been exploited by humans as traditional biomaterials in the form of complex mixtures or in the form of more or less pure compounds since ancient times. Plant terpenoids are widely used as industrially relevant chemicals, including many pharmaceuticals, flavours, fragrances, pesticides and disinfectants, and as large‐volume feedstocks for chemical industries. Recently, there has been a renaissance of awareness of plant terpenoids as a valuable biological resource for societies that will have to become less reliant on petrochemicals. Harnessing the powers of plant and microbial systems for production of economically valuable plant terpenoids requires interdisciplinary and often expensive research into their chemistry, biosynthesis and genomics, as well as metabolic and biochemical engineering. This paper provides an overview of the formation of hemi‐, mono‐, sesqui‐ and diterpenoids in plants, and highlights some well‐established examples for these classes of terpenoids in the context of biomaterials and biofuels.
0

Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest

Christopher Keeling et al.Jan 1, 2013
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects.
0
Citation292
0
Save
0

Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest

Mei Xiao et al.Apr 17, 2013
Plants produce a vast array of specialized metabolites, many of which are used as pharmaceuticals, flavors, fragrances, and other high-value fine chemicals. However, most of these compounds occur in non-model plants for which genomic sequence information is not yet available. The production of a large amount of nucleotide sequence data using next-generation technologies is now relatively fast and cost-effective, especially when using the latest Roche-454 and Illumina sequencers with enhanced base-calling accuracy. To investigate specialized metabolite biosynthesis in non-model plants we have established a data-mining framework, employing next-generation sequencing and computational algorithms, to construct and analyze the transcriptomes of 75 non-model plants that produce compounds of interest for biotechnological applications. After sequence assembly an extensive annotation approach was applied to assign functional information to over 800,000 putative transcripts. The annotation is based on direct searches against public databases, including RefSeq and InterPro. Gene Ontology (GO), Enzyme Commission (EC) annotations and associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps are also collected. As a proof-of-concept, the selection of biosynthetic gene candidates associated with six specialized metabolic pathways is described. A web-based BLAST server has been established to allow public access to assembled transcriptome databases for all 75 plant species of the PhytoMetaSyn Project (www.phytometasyn.ca).
0
Citation234
0
Save
3

The western redcedar genome reveals low genetic diversity in a self-compatible conifer

Tal Shalev et al.Aug 29, 2022
Abstract We assembled the 9.8 Gbp genome of western redcedar (WRC, Thuja plicata ), an ecologically and economically important conifer species of the Cupressaceae. The genome assembly, derived from a uniquely inbred tree produced through five generations of self-fertilization (selfing), was determined to be 86% complete by BUSCO analysis – one of the most complete genome assemblies for a conifer. Population genomic analysis revealed WRC to be one of the most genetically depauperate wild plant species, with an effective population size of approximately 300 and no significant genetic differentiation across its geographic range. Nucleotide diversity, π, is low for a continuous tree species, with many loci exhibiting zero diversity, and the ratio of π at zero-to four-fold degenerate sites is relatively high (∼ 0.33), suggestive of weak purifying selection. Using an array of genetic lines derived from up to five generations of selfing, we explored the relationship between genetic diversity and mating system. While overall heterozygosity was found to decline faster than expected during selfing, heterozygosity persisted at many loci, and nearly 100 loci were found to deviate from expectations of genetic drift, suggestive of associative overdominance. Non-reference alleles at such loci often harbor deleterious mutations and are rare in natural populations, implying that balanced polymorphisms are maintained by linkage to dominant beneficial alleles. This may account for how WRC remains responsive to natural and artificial selection, despite low genetic diversity.
3
Citation10
0
Save
Load More