WR
Wolfgang Rathmann
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(79% Open Access)
Cited by:
8,016
h-index:
87
/
i10-index:
370
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

Benjamin Voight et al.Jun 27, 2010
Mark McCarthy and colleagues identify twelve new risk loci for type 2 diabetes through a large-scale genome-wide association and replication study in individuals of European ancestry. The identified loci affect both beta-cell function and insulin action and are enriched for genes involved in cell cycle regulation. By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
0
Citation1,756
0
Save
0

Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity

Simone Wahl et al.Dec 20, 2016
Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
0
Citation814
0
Save
0

Variants in MTNR1B influence fasting glucose levels

Inga Prokopenko et al.Dec 7, 2008
Gonçalo Abecasis and colleagues report associations with fasting plasma glucose levels in a collection of ten genome–wide association scans from the MAGIC consortium. They find variants in the gene encoding melatonin receptor 1B that are associated with fasting glucose levels and, in a meta-analysis of 13 case-control studies, also show association with increased risk of type 2 diabetes. To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06–0.08) mmol/l in fasting glucose levels (P = 3.2 × 10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 × 10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05–1.12), per G allele P = 3.3 × 10−7) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 × 10−57) and GCK (rs4607517, P = 1.0 × 10−25) loci.
0
Citation726
0
Save
0

Novel biomarkers for pre‐diabetes identified by metabolomics

Rui Wang‐Sattler et al.Jan 1, 2012
Article25 September 2012Open Access Novel biomarkers for pre-diabetes identified by metabolomics Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Author Information Rui Wang-Sattler 1,‡, Zhonghao Yu1,‡, Christian Herder2,‡, Ana C Messias3,‡, Anna Floegel4, Ying He5,6, Katharina Heim7, Monica Campillos8, Christina Holzapfel1,9, Barbara Thorand10, Harald Grallert1, Tao Xu1, Erik Bader1, Cornelia Huth10, Kirstin Mittelstrass1, Angela Döring11, Christa Meisinger10, Christian Gieger12, Cornelia Prehn13, Werner Roemisch-Margl8, Maren Carstensen2, Lu Xie5, Hisami Yamanaka-Okumura14, Guihong Xing15, Uta Ceglarek16, Joachim Thiery16, Guido Giani17, Heiko Lickert18, Xu Lin19, Yixue Li5,6, Heiner Boeing4, Hans-Georg Joost4, Martin Hrabé de Angelis13,20, Wolfgang Rathmann17, Karsten Suhre8,21,22, Holger Prokisch7, Annette Peters10, Thomas Meitinger7,23, Michael Roden2,24, H-Erich Wichmann11,25, Tobias Pischon4,26, Jerzy Adamski13,20 and Thomas Illig1,27 1Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 2German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 3Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany 4Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany 5Shanghai Center for Bioinformation Technology, Shanghai, China 6Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 7Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany 8Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany 9Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany 10Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany 11Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany 12Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 13Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany 14Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan 15Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China 16Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany 17German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 18Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany 19Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 20Chair of Experimental Genetics, Technische Universität München, Munich, Germany 21Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany 22Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar 23Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany 24Klinikum rechts der Isar, Technische Universität München, Munich, Germany 25Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany 26Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany 27Hannover Unified Biobank, Hannover Medical School, Hannover, Germany ‡These authors contributed equally to this work *Corresponding author. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany. Tel.:+49 89 3187 3978; Fax:+49 89 3187 2428; E-mail: [email protected] Molecular Systems Biology (2012)8:615https://doi.org/10.1038/msb.2012.43 PDFDownload PDF of article text and main figures. Peer ReviewDownload a summary of the editorial decision process including editorial decision letters, reviewer comments and author responses to feedback. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Type 2 diabetes (T2D) can be prevented in pre-diabetic individuals with impaired glucose tolerance (IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre-diabetes. We quantified 140 metabolites for 4297 fasting serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic variation in pre-diabetic individuals that are distinct from known diabetes risk indicators, such as glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT individuals as compared to those with normal glucose tolerance, with P-values ranging from 2.4 × 10−4 to 2.1 × 10−13. Lower levels of glycine and LPC were found to be predictors not only for IGT but also for T2D, and were independently confirmed in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Using metabolite–protein network analysis, we identified seven T2D-related genes that are associated with these three IGT-specific metabolites by multiple interactions with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D. Synopsis A targeted metabolomics approach was used to identify candidate biomarkers of pre-diabetes. The relevance of the identified metabolites is further corroborated with a protein-metabolite interaction network and gene expression data. Three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine C2) were found with significantly altered levels in pre-diabetic individuals compared with normal controls. Lower levels of glycine and LPC (18:2) were found to predict risks for pre-diabetes and type 2 diabetes (T2D). Seven T2D-related genes (PPARG, TCF7L2, HNF1A, GCK, IGF1, IRS1 and IDE) are functionally associated with the three identified metabolites. The unique combination of methodologies, including prospective population-based and nested case–control, as well as cross-sectional studies, was essential for the identification of the reported biomarkers. Introduction Type 2 diabetes (T2D) is defined by increased blood glucose levels due to pancreatic β-cell dysfunction and insulin resistance without evidence for specific causes, such as autoimmune destruction of pancreatic β-cells (Krebs et al, 2002; Stumvoll et al, 2005; Muoio and Newgard, 2008). A state of pre-diabetes (i.e., impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT)) with only slightly elevated blood glucose levels may precede T2D for years (McGarry, 2002; Tabak et al, 2012). The development of diabetes in pre-diabetic individuals can be prevented or delayed by dietary changes and increased physical activity (Tuomilehto et al, 2001; Knowler et al, 2002). However, no specific biomarkers that enable prevention have been reported. Metabolomics studies allow metabolites involved in disease mechanisms to be discovered by monitoring metabolite level changes in predisposed individuals compared with healthy ones (Shaham et al, 2008; Newgard et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011; Rhee et al, 2011; Wang et al, 2011; Cheng et al, 2012; Goek et al, 2012). Altered metabolite levels may serve as diagnostic biomarkers and enable preventive action. Previous cross-sectional metabolomics studies of T2D were either based on small sample sizes (Shaham et al, 2008; Wopereis et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011) or did not consider the influence of common risk factors of T2D (Newgard et al, 2009). Recently, based on prospective nested case–control studies with relative large samples (Rhee et al, 2011; Wang et al, 2011), five branched-chain and aromatic amino acids were identified as predictors of T2D (Wang et al, 2011). Here, using various comprehensive large-scale approaches, we measured metabolite concentration profiles (Yu et al, 2012) in the population-based (Holle et al, 2005; Wichmann et al, 2005) Cooperative Health Research in the Region of Augsburg (KORA) baseline (survey 4 (S4)) and follow-up (F4) studies (Rathmann et al, 2009; Meisinger et al, 2010; Jourdan et al, 2012). The results of these cross-sectional and prospective studies allowed us to (i) reliably identify candidate biomarkers of pre-diabetes and (ii) build metabolite–protein networks to understand diabetes-related metabolic pathways. Results Study participants Individuals with known T2D were identified by physician-validated self-reporting (Rathmann et al, 2010) and excluded from our analysis, to avoid potential influence from anti-diabetic medication with non-fasting participants and individuals with missing values (Figure 1A). Based on both fasting and 2-h glucose values (i.e., 2 h post oral 75 g glucose load), individuals were defined according to the WHO diagnostic criteria to have normal glucose tolerance (NGT), isolated IFG (i-IFG), IGT or newly diagnosed T2D (dT2D) (WHO, 1999; Rathmann et al, 2009; Meisinger et al, 2010; Supplementary Table S1). The sample sets include 91 dT2D patients and 1206 individuals with non-T2D, including 866 participants with NGT, 102 with i-IFG and 238 with IGT, in the cross-sectional KORA S4 (Figure 1A; study characteristics are shown in Table I). Of the 1010 individuals in a fasting state who participated at baseline and follow-up surveys (Figure 1B, study characteristics of the KORA F4 survey are shown in Supplementary Table S2), 876 of them were non-diabetic at baseline. Out of these, about 10% developed T2D (i.e., 91 incident T2D) (Figure 1C). From the 641 individuals with NGT at baseline, 18% developed IGT (i.e., 118 incident IGT) 7 years later (Figure 1D). The study characteristics of the prospective KORA S4→F4 are shown in Table II. Figure 1.Population description. Metabolomics screens in the KORA cohort, at baseline S4 (A), overlapped between S4 and F4 (B) and prospective (C, D). Participant numbers are shown. Normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), impaired glucose tolerance (IGT), type 2 diabetes mellitus (T2D) and newly diagnosed T2D (dT2D). Non-T2D individuals include NGT, i-IFG and IGT participants. Download figure Download PowerPoint Table 1. Characteristics of the KORA S4 cross-sectional study sample Clinical and laboratory parameters NGT i-IFG IGT dT2D N 866 102 238 91 Age (years) 63.5±5.5 64.1±5.2 65.2±5.2 65.9±5.4 Sex (female) (%) 52.2 30.4 44.9 41.8 BMI (kg/m2) 27.7±4.1 29.2±4 29.6±4.1 30.2±3.9 Physical activity (% >1 h per week) 46.7 35.3 39.9 36.3 Alcohol intakea (%) 20.2 20.5 25.2 24.2 Current smoker (%) 14.8 10.8 10.9 23.1 Systolic BP (mm Hg) 131.7±18.9 138.9±17.9 140.7±19.8 146.8±21.5 HDL cholesterol (mg/dl) 60.5±16.4 55.7±15.9 55.7±15.1 50.0±15.8 LDL cholesterol (mg/dl) 154.5±39.8 152.1±37.7 155.2±38.6 146.1±44.6 Triglycerides (mg/dl) 120.7±68.3 145.0±96.0 146.6±80.0 170.6±107.1 HbA1c (%) 5.56±0.33 5.62±0.33 5.66±0.39 6.21±0.83 Fasting glucose (mg/dl) 95.6±7.1 114.2±3.7 104.5±9.7 133.2±31.7 2-h Glucose (mg/dl) 102.1±21.0 109.3±18.7 163.4±16.4 232.1±63.7 Fasting insulin (μU/ml) 10.48±7.28 16.26±9.67 13.92±9.53 17.70±12.61 NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose; IGT, impaired glucose tolerance; dT2D, newly diagnosed type 2 diabetes; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means±s.d. are given for each variable and each group (NGT, i-IFG, IGT and dT2D). a ⩾20 g/day for women; ⩾40 g/day for men. Table 2. Characteristics of the KORA S4→F4 prospective study samples NGT at baseline (n=589) Non-T2D at baseline (n=876) Remained NGT at follow-up Developed IGT at follow-up Remained Non-T2D at follow-up Developed T2D at follow-up N 471 118 785 91 Age (years) 62.4±5.4 63.9±5.5 62.9±5.4 65.5±5.2 Sex (female) (%) 52.2 55.9 50.8 34.1 BMI (kg/m2) 27.2±3.8 28.2±3.9 27.9±4 30.2±3.6 Physical activity (% >1 h per week) 52.9 43.2 52.2 58.2 Alcohol intakea (%) 19.9 20.3 20.6 19.8 Smoker (%) 14.6 9.3 12.0 14.3 Systolic BP (mm Hg) 129.6±18.2 134.2±18.7 132.4±18.6 137.8±19 HDL cholesterol (mg/dl) 61.3±16.8 58.9±16.2 60.0±16.5 51.9±12.4 LDL cholesterol (mg/dl) 153.9±38.4 156.9±42.7 154.5±39.5 157.7±41.6 Triglycerides (mg/dl) 118.1±63.9 129.5±79.0 125.0±70.0 151.2±74.2 HbA1c (%) 5.54±0.33 5.59±0.34 5.6±0.3 5.8±0.4 Fasting glucose (mg/dl) 94.7±6.9 96.6±7.1 97.7±8.8 106.1±10.1 2-h Glucose (mg/dl) 98.2±20.5 109.9±16.8 109.3±28 145.9±32.3 Fasting insulin (μU/ml) 9.91±6.48 11
0
Citation642
0
Save
0

Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

Richa Saxena et al.Jan 17, 2010
Richard Watanabe and colleagues of the MAGIC consortium report meta-analyses of genome-wide association studies to glucose levels two hours after an oral glucose challenge. They identify variants in GIPR associated with glucose and insulin responses. Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18).
0
Citation621
0
Save
0

High prevalence of undiagnosed diabetes mellitus in Southern Germany: Target populations for efficient screening. The KORA survey 2000

Wolfgang Rathmann et al.Feb 1, 2003
To estimate the prevalence of undiagnosed diabetes mellitus, impaired glucose tolerance (IGT) and impaired fasting glucose (IFG), and their relations with cardiovascular risk factors in the general population aged 55 to 74 years in Southern Germany.Oral glucose tolerance tests were carried out in a random sample of 1353 subjects aged 55 to 74 years participating in the KORA (Cooperative Health Research in the Region of Augsburg) Survey 2000. Prevalences of glucose tolerance categories (1999 WHO criteria) were adjusted for sample probabilities. The numbers needed to screen (NNTS) to identify one person with undiagnosed diabetes were estimated from age-adjusted logistic regression models.Sample design-based prevalences of known and unknown diabetes, IGT, and IFG were 9.0%, 9.7%, 16.8%, 9.8% in men, and 7.9%, 6.9%, 16.0%, 4.5% in women, respectively. In both sexes, participants with undiagnosed diabetes had higher BMI, waist circumference, systolic blood pressure, triglycerides, uric acid, and lower HDL-cholesterol than normoglycaemic subjects. A combination of abdominal adiposity, hypertension, and parental diabetes in men resulted in a NNTS of 2.9 (95%CI: 2.0-4.6). In women, the combination of increased triglycerides, hypertension and parental diabetes history yielded a NNTS of 3.2 (95%CI: 2.2-5.1).About 40% of the population aged 55 to 74 years in the Augsburg region have disturbed glucose tolerance or diabetes. Half of the total cases with diabetes are undiagnosed. Cardiovascular risk factors worsen among glucose tolerance categories, indicating the need for screening and prevention. Screening for undiagnosed diabetes could be most efficient in individuals with abdominal adiposity (men), hypertriglyceridaemia (women), hypertension, and parental diabetes history.
0
Citation548
0
Save
0

Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study

Oana‐Patricia Zaharia et al.Jul 22, 2019
Background Cluster analyses have proposed different diabetes phenotypes using age, BMI, glycaemia, homoeostasis model estimates, and islet autoantibodies. We tested whether comprehensive phenotyping validates and further characterises these clusters at diagnosis and whether relevant diabetes-related complications differ among these clusters, during 5-years of follow-up. Methods Patients with newly diagnosed type 1 or type 2 diabetes in the German Diabetes Study underwent comprehensive phenotyping and assessment of laboratory variables. Insulin sensitivity was assessed using hyperinsulinaemic-euglycaemic clamps, hepatocellular lipid content using magnetic resonance spectroscopy, hepatic fibrosis using non-invasive scores, and peripheral and autonomic neuropathy using functional and clinical criteria. Patients were reassessed after 5 years. The German Diabetes Study is registered with ClinicalTrials.gov, number NCT01055093, and is ongoing. Findings 1105 patients were classified at baseline into five clusters, with 386 (35%) assigned to mild age-related diabetes (MARD), 323 (29%) to mild obesity-related diabetes (MOD), 247 (22%) to severe autoimmune diabetes (SAID), 121 (11%) to severe insulin-resistant diabetes (SIRD), and 28 (3%) to severe insulin-deficient diabetes (SIDD). At 5-year follow-up, 367 patients were reassessed, 128 (35%) with MARD, 106 (29%) with MOD, 88 (24%) with SAID, 35 (10%) with SIRD, and ten (3%) with SIDD. Whole-body insulin sensitivity was lowest in patients with SIRD at baseline (mean 4·3 mg/kg per min [SD 2·0]) compared with those with SAID (8·4 mg/kg per min [3·2]; p<0·0001), MARD (7·5 mg/kg per min [2·5]; p<0·0001), MOD (6·6 mg/kg per min [2·6]; p=0·0011), and SIDD (5·5 mg/kg per min [2·4]; p=0·0035). The fasting adipose-tissue insulin resistance index at baseline was highest in patients with SIRD (median 15·6 [IQR 9·3–20·9]) and MOD (11·6 [7·4–17·9]) compared with those with MARD (6·0 [3·9–10·3]; both p<0·0001) and SAID (6·0 [3·0–9·5]; both p<0·0001). In patients with newly diagnosed diabetes, hepatocellular lipid content was highest at baseline in patients assigned to the SIRD cluster (median 19% [IQR 11–22]) compared with all other clusters (7% [2–15] for MOD, p=0·00052; 5% [2–11] for MARD, p<0·0001; 2% [0–13] for SIDD, p=0·0083; and 1% [0–3] for SAID, p<0·0001), even after adjustments for baseline medication. Accordingly, hepatic fibrosis at 5-year follow-up was more prevalent in patients with SIRD (n=7 [26%]) than in patients with SAID (n=5 [7%], p=0·0011), MARD (n=12 [12%], p=0·012), MOD (n=13 [15%], p=0·050), and SIDD (n=0 [0%], p value not available). Confirmed diabetic sensorimotor polyneuropathy was more prevalent at baseline in patients with SIDD (n=9 [36%]) compared with patients with SAID (n=10 [5%], p<0·0001), MARD (n=39 [15%], p=0·00066), MOD (n=26 [11%], p<0·0001), and SIRD (n=10 [17%], p<0·0001). Interpretation Cluster analysis can characterise cohorts with different degrees of whole-body and adipose-tissue insulin resistance. Specific diabetes clusters show different prevalence of diabetes complications at early stages of non-alcoholic fatty liver disease and diabetic neuropathy. These findings could help improve targeted prevention and treatment and enable precision medicine for diabetes and its comorbidities. Funding German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, Research Network SFB 1116 of the German Research Foundation, and Schmutzler Stiftung.
0
Citation423
0
Save
0

Prevalence of Polyneuropathy in Pre-Diabetes and Diabetes Is Associated With Abdominal Obesity and Macroangiopathy

Dan Ziegler et al.Feb 28, 2008
OBJECTIVE—It is controversial whether there is a glycemic threshold above which polyneuropathy develops and which are the most important factors associated with polyneuropathy in the general population. The aim of this study was to determine the prevalence and risk factors of polyneuropathy in subjects with diabetes, impaired fasting glucose (IFG), impaired glucose tolerance (IGT), or normal glucose tolerance (NGT). RESEARCH DESIGN AND METHODS—Subjects with diabetes (n = 195) and control subjects matched for age and sex (n = 198) from the population-based MONICA (Monitoring Trends and Determinants on Cardiovascular Diseases)/KORA (Cooperative Research in the Region of Augsburg) Augsburg Surveys 1989/1990 (S2) and 1994/1995 (S3) aged 25–74 years were contacted again and assessed in 1997/1998 by the Michigan Neuropathy Screening Instrument using a score cut point &gt;2. An oral glucose tolerance test was performed in the control subjects. RESULTS—Among the control subjects, 46 (23.2%) had IGT, 71 (35.9%) had IFG, and 81 had NGT. The prevalence of polyneuropathy was 28.0% in the diabetic subjects, 13.0% in those with IGT, 11.3% in those with IFG, and 7.4% in those with NGT (P ≤ 0.05 for diabetes vs. NGT, IFG, and IGT). In the entire population studied (n = 393), age, waist circumference, and diabetes were independent factors significantly associated with polyneuropathy, whereas in the diabetic group polyneuropathy was associated with age, waist circumference, and peripheral arterial disease (PAD) (all P &lt; 0.05). CONCLUSIONS—The prevalence of polyneuropathy is slightly increased in individuals with IGT and IFG compared with those with NGT. The association with waist circumference and PAD suggests that the latter and abdominal obesity may constitute important targets for strategies to prevent diabetic polyneuropathy.
0
Citation376
0
Save
0

Traffic-Related Air Pollution and Incident Type 2 Diabetes: Results from the SALIA Cohort Study

Ursula Krämer et al.May 27, 2010
BackgroundCross-sectional and ecological studies indicate that air pollution may be a risk factor for type 2 diabetes, but prospective data are lacking.ObjectiveWe examined the association between traffic-related air pollution and incident type 2 diabetes.DesignBetween 1985 and 1994, cross-sectional surveys were performed in the highly industrialized Ruhr district (West Germany); a follow-up investigation was conducted in 2006 using data from the Study on the Influence of Air Pollution on Lung, Inflammation and Aging (SALIA) cohort.Participants1,775 nondiabetic women who were 54–55 years old at baseline participated in both baseline and follow-up investigations and had complete information available.Materials and MethodsUsing questionnaires, we assessed 16-year incidence (1990–2006) of type 2 diabetes and information about covariates. Complement factor C3c as marker for subclinical inflammation was measured at baseline. Individual exposure to traffic-related particulate matter (PM) and nitrogen dioxide was determined at different spatial scales.ResultsBetween 1990 and 2006, 87 (10.5%) new cases of diabetes were reported among the SALIA cohort members. The hazards for diabetes were increased by 15–42% per interquartile range of PM or traffic-related exposure. The associations persisted when different spatial scales were used to assess exposure and remained robust after adjusting for age, body mass index, socioeconomic status, and exposure to several non–traffic-related sources of air pollution. C3c was associated with PM pollution at baseline and was a strong independent predictor of incident diabetes. Exploratory analyses indicated that women with high C3c blood levels were more susceptible for PM-related excess risk of diabetes than were women with low C3c levels.ConclusionsTraffic-related air pollution is associated with incident type 2 diabetes among elderly women. Subclinical inflammation may be a mechanism linking air pollution with type 2 diabetes.Relevance to clinical practiceOur study identifies traffic-related air pollution as a novel and potentially modifiable risk factor of type 2 diabetes.
0
Paper
Citation369
0
Save
Load More