The histone acetyl transferase KAT2A (also known as GCN5) can also catalyse histone succinylation, with the α-KGDH complex providing a local source of succinyl-CoA. Succinylation of lysines has been identified as a post-translational modification of histones, but the enzymes that deposit it and its functional consequences are unknown. Here, Zhimin Lu and colleagues find that GCN5, a known histone acetyl transferase, can also catalyse histone succinylation. GCN5 interacts with nuclear succinyl-CoA and with the enzyme α-ketoglutarate dehydrogenase (α-KGDH), which generates a local source of succinyl-CoA. The complex of GCN5 and α-KGDH can regulate histone H3K79 succinylation around transcription start sites and affect gene expression. The authors also show that a reduction in H3K79 succinylation is associated with inhibited proliferation of tumour cells in mice. Histone modifications, such as the frequently occurring lysine succinylation1,2, are central to the regulation of chromatin-based processes. However, the mechanism and functional consequences of histone succinylation are unknown. Here we show that the α-ketoglutarate dehydrogenase (α-KGDH) complex is localized in the nucleus in human cell lines and binds to lysine acetyltransferase 2A (KAT2A, also known as GCN5) in the promoter regions of genes. We show that succinyl-coenzyme A (succinyl-CoA) binds to KAT2A. The crystal structure of the catalytic domain of KAT2A in complex with succinyl-CoA at 2.3 Å resolution shows that succinyl-CoA binds to a deep cleft of KAT2A with the succinyl moiety pointing towards the end of a flexible loop 3, which adopts different structural conformations in succinyl-CoA-bound and acetyl-CoA-bound forms. Site-directed mutagenesis indicates that tyrosine 645 in this loop has an important role in the selective binding of succinyl-CoA over acetyl-CoA. KAT2A acts as a succinyltransferase and succinylates histone H3 on lysine 79, with a maximum frequency around the transcription start sites of genes. Preventing the α-KGDH complex from entering the nucleus, or expression of KAT2A(Tyr645Ala), reduces gene expression and inhibits tumour cell proliferation and tumour growth. These findings reveal an important mechanism of histone modification and demonstrate that local generation of succinyl-CoA by the nuclear α-KGDH complex coupled with the succinyltransferase activity of KAT2A is instrumental in histone succinylation, tumour cell proliferation, and tumour development.