ZY
Zhimin Yin
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
692
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Class II Major Histocompatibility Complex Plays an Essential Role in Obesity-Induced Adipose Inflammation

Tuo Deng et al.Mar 1, 2013
+14
L
C
T

Summary

 Adipose-resident T cells (ARTs) regulate metabolic and inflammatory responses in obesity, but ART activation signals are poorly understood. Here, we describe class II major histocompatibility complex (MHCII) as an important component of high-fat-diet (HFD)-induced obesity. Microarray analysis of primary adipocytes revealed that multiple genes involved in MHCII antigen processing and presentation increased in obese women. In mice, adipocyte MHCII increased within 2 weeks on HFD, paralleling increases in proinflammatory ART markers and decreases in anti-inflammatory ART markers, and preceding adipose tissue macrophage (ATM) accumulation and proinflammatory M1 polarization. Mouse 3T3-L1 and primary adipocytes activated T cells in an antigen-specific, contact-dependent manner, indicating that adipocyte MHCII is functional. HFD-fed MHCII−/− mice developed less adipose inflammation and insulin resistance than did wild-type mice, despite developing similar adiposity. These investigations uncover a mechanism whereby a HFD-induced adipocyte/ART dialog involving MHCII instigates adipose inflammation and, together with ATM MHCII, escalates its progression.
0

KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase

Yugang Wang et al.Dec 1, 2017
+15
K
Y
Y
The histone acetyl transferase KAT2A (also known as GCN5) can also catalyse histone succinylation, with the α-KGDH complex providing a local source of succinyl-CoA. Succinylation of lysines has been identified as a post-translational modification of histones, but the enzymes that deposit it and its functional consequences are unknown. Here, Zhimin Lu and colleagues find that GCN5, a known histone acetyl transferase, can also catalyse histone succinylation. GCN5 interacts with nuclear succinyl-CoA and with the enzyme α-ketoglutarate dehydrogenase (α-KGDH), which generates a local source of succinyl-CoA. The complex of GCN5 and α-KGDH can regulate histone H3K79 succinylation around transcription start sites and affect gene expression. The authors also show that a reduction in H3K79 succinylation is associated with inhibited proliferation of tumour cells in mice. Histone modifications, such as the frequently occurring lysine succinylation1,2, are central to the regulation of chromatin-based processes. However, the mechanism and functional consequences of histone succinylation are unknown. Here we show that the α-ketoglutarate dehydrogenase (α-KGDH) complex is localized in the nucleus in human cell lines and binds to lysine acetyltransferase 2A (KAT2A, also known as GCN5) in the promoter regions of genes. We show that succinyl-coenzyme A (succinyl-CoA) binds to KAT2A. The crystal structure of the catalytic domain of KAT2A in complex with succinyl-CoA at 2.3 Å resolution shows that succinyl-CoA binds to a deep cleft of KAT2A with the succinyl moiety pointing towards the end of a flexible loop 3, which adopts different structural conformations in succinyl-CoA-bound and acetyl-CoA-bound forms. Site-directed mutagenesis indicates that tyrosine 645 in this loop has an important role in the selective binding of succinyl-CoA over acetyl-CoA. KAT2A acts as a succinyltransferase and succinylates histone H3 on lysine 79, with a maximum frequency around the transcription start sites of genes. Preventing the α-KGDH complex from entering the nucleus, or expression of KAT2A(Tyr645Ala), reduces gene expression and inhibits tumour cell proliferation and tumour growth. These findings reveal an important mechanism of histone modification and demonstrate that local generation of succinyl-CoA by the nuclear α-KGDH complex coupled with the succinyltransferase activity of KAT2A is instrumental in histone succinylation, tumour cell proliferation, and tumour development.
0

Association of UGT1A6 gene polymorphisms with sodium valproate-induced tremor in patients with epilepsy

Zhimin Yin et al.Jun 15, 2024
P
Z
Individual susceptibility to sodium valproate (VPA)-induced tremors may be due to genetic polymorphisms in the gene encoding the uridine diphosphate glucuronosyltransferase (UGT) enzyme, which affec the drug's clinical efficacy and cause toxic side effects. This study aimed to investigate the association between UGT1A6 polymorphisms and VPA-induced tremors in patients with epilepsy.
0

Charting Single Cell Lineage Dynamics and Mutation Networks via Homing CRISPR

Stephen Wong et al.Jan 7, 2024
+10
W
L
S
Single cell lineage tracing, essential for unraveling cellular dynamics in disease evolution is critical for developing targeted therapies. CRISPR-Cas9, known for inducing permanent and cumulative mutations, is a cornerstone in lineage tracing. The novel homing guide RNA (hgRNA) technology enhances this by enabling dynamic retargeting and facilitating ongoing genetic modifications. Charting these mutations, especially through successive hgRNA edits, poses a significant challenge. Our solution, LINEMAP, is a computational framework designed to trace and map these mutations with precision. LINEMAP meticulously discerns mutation alleles at single-cell resolution and maps their complex interrelationships through a mutation evolution network. By utilizing a Markov Process model, we can predict mutation transition probabilities, revealing potential mutational routes and pathways. Our reconstruction algorithm, anchored in the Markov model's attributes, reconstructs cellular lineage pathways, shedding light on the cell's evolutionary journey to the minutiae of single-cell division. Our findings reveal an intricate network of mutation evolution paired with a predictive Markov model, advancing our capability to reconstruct single-cell lineage via hgRNA. This has substantial implications for advancing our understanding of biological mechanisms and propelling medical research forward.
0

The cell-cell adhesion protein JAM3 determines nuclear deformability by regulating microtubule organization

Mar Arias-García et al.Jul 2, 2019
+8
T
Z
M
The shape, size, and architecture of the nucleus determines the output of transcriptional programmes. As such, the ability of the nucleus to resist deformation and maintain its shape is essential for homeostasis. Conversely, changes in nuclear shape can alter transcription and cell state. The ability of cells to deform their nuclei is also essential for cells to invade confined spaces. But how cells set the extent of nuclear deformability in response to their environment is unclear. Here we show that the cell-cell adhesion protein JAM3 regulates nuclear shape. In epithelial cells, JAM3 is required for maintenance of nuclear shape by organizing microtubule polymers and promoting LMNA stabilization in the nuclear membrane. Depletion of JAM3 in normal epithelial cells leads to dysmorphic nuclei, which leads to differentiation into a mesenchymal-like state. Inhibiting the actions of kinesins in JAM3 depleted cells restores nuclear morphology and prevents differentiation into the mesenchymal-like state. Critically, JAM3 expression is predictive of disease progression. Thus JAM3 is a molecule which allows cells to control cell fates in response to the presence of neighbouring cells by tuning the extent of nuclear deformability.