Abstract Lamellipodia are sheet-like cellular protrusions crucial for cell migration and endocytosis; their ultrastructure has been extensively studied using electron microscopy. However, the ultrastructure of the actin cytoskeleton during lamellipodia formation remains underexplored. Here, we employed the optogenetic tool PA-Rac1 combined with cryo-electron tomography (cryo-ET) to precisely control Rac1 activation and subsequent freezing via blue light irradiation. This approach enabled detailed structural analysis of newly formed lamellipodia in cells with intact plasma membranes. We successfully visualized lamellipodia with varying degrees of extension, representing different stages of lamellipodia formation. In minor extensions, several unbundled actin filaments formed “Minor protrusions” at several points along the leading edge. For moderately extended lamellipodia, cross-linked actin filaments formed small filopodia-like structures, termed “mini filopodia.” In the most extended lamellipodia, filopodia matured at multiple points along the leading edge, and the number of cross-linked actin filaments running nearly parallel to the leading edge increased throughout the lamellipodia. These observations suggest that actin polymerization begins in specific plasma membrane regions, forming mini filopodia that either mature into full filopodia or detach from the leading edge to form parallel filaments. This turnover of actin structures likely drives lamellipodial protrusion and stabilizes the base, providing new insights into the structural dynamics of the actin cytoskeleton and the mechanisms driving cell migration.