JJ
Juan Juarez
Author with expertise in Nanofluidics and Nanopore Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
1
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deep learning-assisted single-molecule detection of protein post-translational modifications with a biological nanopore

Chan Cao et al.Sep 8, 2023
Abstract Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both the spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, capture their complexity at a single molecule level and characterize their multifaceted roles in health and disease. Nanopore sensing provides high sensitivity for the detection of low-abundance proteins, holding the potential to impact single-molecule proteomics and PTM detection in particular. Here, we demonstrate the ability of a biological nanopore, the pore-forming toxin aerolysin, to detect and distinguish α-synuclein-derived peptides bearing single or multiple PTMs, namely phosphorylation, nitration and oxidation occurring at different positions and in various combinations. The characteristic current signatures of the α-synuclein peptide and its PTM variants could be confidently identified using a deep learning model for signal processing. We further demonstrate that this framework can quantify α-synuclein peptides at picomolar concentration and detect the C-terminal peptides generated by digestion of full-length α-synuclein. Collectively, our work highlights the unique advantage of using nanopore as a tool for simultaneous detection of multiple PTMs and paves the way for their use in biomarker discovery and diagnostics.
0
Citation1
0
Save
0

A humoral stress response protectsDrosophilatissues from antimicrobial peptides

Samuel Rommelaere et al.Jul 24, 2023
Abstract The immune response against an invading pathogen is generally associated with collateral tissue damage caused by the immune system itself. Consequently, several resilience mechanisms have evolved to attenuate the negative impacts of immune effectors. Antimicrobial peptides (AMPs) are small, cationic peptides that contribute to innate defenses by targeting negatively charged membranes of microbes 1, 2 . While being protective against pathogens, AMPs can be cytotoxic to host cells 1, 3 . Little is known of mechanisms that protect host tissues from AMP-induced immunopathology. Here, we reveal that a family of stress-induced proteins, the Turandots 4, 5 , protect Drosophila host tissues from AMPs, increasing resilience to stress. Deletion of several Turandot genes increases fly susceptibility to environmental stresses due to trachea apoptosis and poor oxygen supply. Tracheal cell membranes expose high levels of phosphatidylserine, a negatively charged phospholipid, sensitizing them to the action of AMPs. Turandots are secreted from the fat body upon stress and bind to tracheal cells to protect them against AMPs. In vitro , Turandot A binds to phosphatidylserine on membranes and inhibits the pore-forming activity of Drosophila and human AMPs on eukaryotic cells without affecting their microbicidal activity. Collectively, these data demonstrate that Turandot stress proteins mitigate AMP cytotoxicity to host tissues and therefore improve their efficacy. This provides a first example of a humoral mechanism used by animals limiting host-encoded AMP collateral damages.
0

Exploring new nanopore sensors from the aerolysin family

Nuria Dı́az et al.Apr 10, 2024
Abstract Aerolysin-like proteins are a family of β-pore-forming toxins which are widely present in all kingdoms of life. Recently, this family of proteins is gaining attention because of their biotechnological application as nanopore sensors for sensing and sequencing of biomolecules. Here, we explore the possibilities of using the knowledge of the sequence and structure of proteins to screen and explore new potential nanopore candidates. However, in spite of the conserved structural fold, the sequence identity in this family is very low. This complicates their sequence alignment, hindering the understanding of their pore structure and properties, therefore limiting further biotechnological applications. In an attempt to further understand the properties of aerolysin-like pores, we analyzed the pore structure of three family members, Clostridium perfringens epsilon toxin (ETX), Laetiporus sulphureus lectin (LSL) and Bacillus thuringiensis parasporin-2, comparing it to aerolysin. Their structure and sensing capabilities for ssDNA were first assessed by in silico methods. Moreover, ETX was characterized experimentally in planar lipid membranes for the detection of biomolecules. We found that ETX can form three distinct pore conformations, each presenting a specific open pore current, and only one of them being able to translocate ssDNA. When the ssDNA translocate through ETX, the depth of current blockage is higher compared to aerolysin which indicates a higher sensitivity for molecular sensing. Our findings open a new venue for improving and diversifying nanopore capabilities for molecular sensing.
0

Dissecting the membrane association mechanism of aerolysin pore at femtomolar concentrations using water as a probe

Tereza Schönfeldová et al.Jan 22, 2024
ABSTRACT Aerolysin is a bacterial pore-forming toxin able to form transmembrane pores at the host plasma membrane of narrow internal diameter and great stability. These assets make it a highly promising nanopore for the detection of biopolymers such as nucleic acids and peptides. While much is known about aerolysin from a microbiological and structural side, its membrane association and pore-formation mechanism are not yet fully disclosed. Here, we studied the interaction of femtomolar concentrations of aerolysin and its mutants with liposomes in aqueous solution using angle-resolved second harmonic scattering (AR-SHS), in combination with single-channel current measurements. The measurements were so sensitive to detect electrostatic changes on the membrane-bound aerolysin induced by pH variation induced by the changes in the hydration shell of aerolysin. We reported for the first time the membrane binding affinity of aerolysin at different stages of the pore formation mechanism: while wt aerolysin has a binding affinity as high as 20 fM, the quasi-pore state and the prepore state show gradually decreasing membrane affinities, incomplete insertion and pore opening signature. Moreover, we quantitatively characterized the membrane affinity of mutants relevant for applications to nanopore sensing. This approach opens new possibilities to efficiently screen biological pores suitable for conducting molecular sensing and sequencing measurements, as well as to probe pore forming processes.
0

Increased Brightness and Reduced Efficiency Droop in Perovskite Quantum Dot Light-Emitting Diodes Using Carbazole-Based Phosphonic Acid Interface Modifiers

Gillian Shen et al.Jan 6, 2025
We demonstrate the use of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and [2-(3,6-di-tert-butyl-9H-carbazol-9-yl)ethyl]phosphonic acid (t-Bu-2PACz) as anode modification layers in metal-halide perovskite quantum dot light-emitting diodes (QLEDs). Compared to conventional QLED structures with PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrenesulfonate)/PVK (poly(9-vinylcarbazole)) hole-transport layers, the QLEDs made with phosphonic acid (PA)-modified indium tin oxide (ITO) anodes show an over seven-fold increase in brightness, achieving a brightness of 373,000 cd m–2, one of the highest brightnesses reported to date for colloidal perovskite QLEDs. Importantly, the onset of efficiency roll-off, or efficiency droop, occurs at ∼1000-fold higher current density for QLEDs made with PA-modified anodes compared to control QLEDs made with conventional PEDOT:PSS/PVK hole transport layers, allowing the devices to sustain significantly higher levels of external quantum efficiency at a brightness of >105 cd m–2. Steady-state and time-resolved photoluminescence measurements indicate that these improvements are due to a combination of multiple factors, including reducing quenching of photoluminescence at the PEDOT:PSS interface and reducing photoluminescence efficiency loss at high levels of current density.
2

Physicochemical characterization, toxicity andin vivobiodistribution studies of a discoidal, lipid-based drug delivery vehicle: Lipodisq nanoparticles containing doxorubicin

Maria Torgersen et al.Jun 19, 2020
Abstract Many promising pharmaceutically active compounds have low solubility in aqueous environments and their encapsulation into efficient drug delivery vehicles is crucial to increase their bioavailability. Lipodisq nanoparticles are approximately 10 nm in diameter and consist of a circular phospholipid bilayer, stabilized by an annulus of SMA (a hydrolysed copolymer of styrene and maleic anhydride). SMA is used extensively in structural biology to extract and stabilize integral membrane proteins for biophysical studies. Here, we assess the potential of these nanoparticles as drug delivery vehicles, determining their cytotoxicity and the in vivo excretion pathways of their polymer and lipid components. Doxorubicin-loaded Lipodisqs were cytotoxic across a panel of cancer cell lines, whereas nanoparticles without the drug had no effect on cell proliferation. Intracellular doxorubicin release from Lipodisqs in HeLa cells occurred in the low-pH environment of the endolysosomal system, consistent with the breakdown of the discoidal structure as the carboxylate groups of the SMA polymer become protonated. Biodistribution studies in mice showed that, unlike other nanoparticles injected intravenously, most of the Lipodisq components were recovered in the colon, consistent with rapid uptake by hepatocytes and excretion into bile. These data suggest that Lipodisqs have the potential to act as delivery vehicles for drugs and contrast agents.