TA
Tobias Apinjoh
Author with expertise in Malaria
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
8
h-index:
25
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Resistance to malaria through structural variation of red blood cell invasion receptors

Ellen Leffler et al.Oct 26, 2016
+39
G
G
E
Abstract Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. Here we analyse whole genome sequence data from worldwide human populations, including 765 new genomes from across sub-Saharan Africa, and identify a diverse array of large copy number variants affecting the host invasion receptor genes GYPA and GYPB . We find that a nearby reported association with severe malaria is explained by a complex structural variant that involves the loss of GYPB and gain of two hybrid genes, each with a GYPB extracellular domain and GYPA intracellular domain. This variant reduces the risk of severe malaria by 40% and has recently risen in frequency in parts of Kenya. We show that the structural variant encodes the Dantu blood group antigen, and therefore a serologically distinct red cell phenotype. These findings demonstrate that structural variation of red blood cell invasion receptors is associated with natural resistance to P. falciparum malaria.
0
Citation7
0
Save
0

A complexPlasmodium falciparumcryptotype circulating at low frequency across the African continent

Olivo Miotto et al.Jan 22, 2024
+35
L
A
O
ABSTRACT The population structure of the malaria parasite Plasmodium falciparum can reveal underlying demographic and adaptive evolutionary processes. Here, we analyse population structure in 4,376 P. falciparum genomes from 21 countries across Africa. We identified a strongly differentiated cluster of parasites, comprising ∼1.2% of samples analysed, geographically distributed over 13 countries across the continent. Members of this cluster, named AF1, carry a genetic background consisting of a large number of highly differentiated variants, rarely observed outside this cluster, at a multitude of genomic loci distributed across most chromosomes. At these loci, the AF1 haplotypes appear to have common ancestry, irrespective of the sampling location; outside the shared loci, however, AF1 members are genetically similar to their sympatric parasites. AF1 parasites sharing up to 23 genomic co-inherited regions were found in all major regions of Africa, at locations over 7,000 km apart. We coined the term cryptotype to describe a complex common background which is geographically widespread, but concealed by genomic regions of local origin. Most AF1 differentiated variants are functionally related, comprising structural variations and single nucleotide polymorphisms in components of the MSP1 complex and several other genes involved in interactions with red blood cells, including invasion and erythrocyte antigen export. We propose that AF1 parasites have adapted to some as yet unidentified evolutionary niche, by acquiring a complex compendium of interacting variants that rarely circulate separately in Africa. As the cryptotype spread across the continent, it appears to have been maintained mostly intact in spite of recombination events, suggesting a selective advantage. It is possible that other cryptotypes circulate in Africa, and new analysis methods may be needed to identify them.
0
Citation1
0
Save
0

Admixture into and within sub-Saharan Africa

George Busby et al.Feb 1, 2016
+14
Q
G
G
Understanding patterns of genetic diversity is a crucial component of medical research in Africa. Here we use haplotype-based population genetics inference to describe gene-flow and admixture in a collection of 48 African groups with a focus on the major populations of the sub-Sahara. Our analysis presents a framework for interpreting haplotype diversity within and between population groups and provides a demographic foundation for genetic epidemiology in Africa. We show that coastal African populations have experienced an influx of Eurasian haplotypes as a series of admixture events over the last 7,000 years, and that Niger-Congo speaking groups from East and Southern Africa share ancestry with Central West Africans as a result of recent population expansions associated with the adoption of new agricultural technologies. We demonstrate that most sub-Saharan populations share ancestry with groups from outside of their current geographic region as a result of large-scale population movements over the last 4,000 years. Our in-depth analysis of admixture provides an insight into haplotype sharing across different geographic groups and the recent movement of alleles into new climatic and pathogenic environments, both of which will aid the interpretation of genetic studies of disease in sub-Saharan Africa.
0

Genomic epidemiology of the current wave of artemisinin resistant malaria

Roberto Amato et al.May 22, 2015
+97
C
O
R
Artemisinin resistant Plasmodium falciparum is advancing across Southeast Asia in a soft selective sweep involving at least 20 independent kelch13 mutations. In a large global survey, we find that kelch13 mutations which cause resistance in Southeast Asia are present at low frequency in Africa. We show that African kelch13 mutations have originated locally, and that kelch13 shows a normal variation pattern relative to other genes in Africa, whereas in Southeast Asia there is a great excess of non‐synonymous mutations, many of which cause radical amino‐acid changes. Thus, kelch13 is not currently undergoing strong selection in Africa, despite a deep reservoir of standing variation that could potentially allow resistance to emerge rapidly. The practical implications are that public health surveillance for artemisinin resistance should not rely on kelch13 data alone, and interventions to prevent resistance must account for local evolutionary conditions, shown by genomic epidemiology to differ greatly between geographical regions.
0

Elusive Plasmodium Species Complete the Human Malaria Genome Set

Gavin Rutledge et al.May 12, 2016
+19
R
A
G
Despite the huge international endeavor to understand the genomic basis of malaria biology, there remains a lack of information about two human-infective species: Plasmodium malariae and P. ovale. The former is prevalent across all malaria endemic regions and able to recrudesce decades after the initial infection. The latter is a dormant stage hypnozoite-forming species, similar to P. vivax. Here we present the newly assembled reference genomes of both species, thereby completing the set of all human-infective Plasmodium species. We show that the P. malariae genome is markedly different to other Plasmodium genomes and relate this to its unique biology. Using additional draft genome assemblies, we confirm that P. ovale consists of two cryptic species that may have diverged millions of years ago. These genome sequences provide a useful resource to study the genetic basis of human-infectivity in Plasmodium species.