AD
Amin Doostmohammadi
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
18
h-index:
29
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
33

Nature of active forces in tissues: how contractile cells can form extensile monolayers

Lakshmi Balasubramaniam et al.Oct 28, 2020
+11
T
A
L
Actomyosin machinery endows cells with contractility at a single cell level. However, at a tissue scale, cells can show either contractile or extensile behaviour based on the direction of pushing or pulling forces due to neighbour interactions or substrate interactions. Previous studies have shown that a monolayer of fibroblasts behaves as a contractile system 1 while a monolayer of epithelial cells 2,3 or neural crest cells behaves as an extensile system. 4 How these two contradictory sources of force generation can coexist has remained unexplained. Through a combination of experiments using MDCK (Madin Darby Canine Kidney) cells, and in-silico modeling, we uncover the mechanism behind this switch in behaviour of epithelial cell monolayers from extensile to contractile as the weakening of intercellular contacts. We find that this switch in active behaviour also promotes the buildup of tension at the cell-substrate interface through an increase in actin stress fibers and higher traction forces. This in turn triggers a mechanotransductive response in vinculin translocation to focal adhesion sites and YAP (Yes-associated protein) transcription factor activation. Our studies also show that differences in extensility and contractility act to sort cells, thus determining a general mechanism for mechanobiological pattern formation during cell competition, morphogenesis and cancer progression.
33
Citation7
0
Save
16

Filopodia rotate and coil by actively generating twist in their actin shaft

Natascha Leijnse et al.Sep 20, 2020
+7
B
Y
N
Abstract Filopodia are actin-rich structures, present on the surface of practically every known eukaryotic cell. These structures play a pivotal role in specific cell-cell and cell-matrix interactions by allowing cells to explore their environment, generate mechanical forces, perform chemical signaling, or convey signals via intercellular tunneling nano-bridges. The dynamics of filopodia appear quite complex as they exhibit a rich behavior of buckling, pulling, length and shape changes. Here, we find that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling of their actin rich core. Importantly, we show the rotational dynamics of the filamentous actin inside filopodia for a range of highly distinct and cognate cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist, and hence rotation, is an emergent phenomenon of active filaments confined in a narrow channel which points to a generic mechanism present in all cells. Our measurements confirm that filopodia exert traction forces and form helical buckles in a range of different cell types that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia.
16
Citation3
0
Save
1

Mechanics of cell integration in vivo

Guilherme Ventura et al.Nov 18, 2021
+3
R
A
G
ABSTRACT During embryonic development, regeneration and homeostasis, cells have to physically integrate into their target tissues, where they ultimately execute their function. Despite a significant body of research on how mechanical forces instruct cellular behaviors within the plane of an epithelium, very little is known about the mechanical interplay at the interface between migrating cells and their surrounding tissue, which has its own dynamics, architecture and identity. Here, using quantitative in vivo imaging and molecular perturbations, together with a theoretical model, we reveal that multiciliated cell (MCC) precursors in the Xenopus embryo form dynamic filopodia that pull at the vertices of the overlying epithelial sheet to probe their stiffness and identify the preferred positions for their integration into the tissue. Moreover, we report a novel function for a structural component of vertices, the lipolysis-stimulated lipoprotein receptor (LSR), in filopodia dynamics and show its critical role in cell intercalation. Remarkably, we find that pulling forces equip the MCCs to remodel the epithelial junctions of the neighboring tissue, enabling them to generate a permissive environment for their integration. Our findings reveal the intricate physical crosstalk at the cell-tissue interface and uncover previously unknown functions for mechanical forces in orchestrating cell integration.
1
Citation2
0
Save
1

Mechanics of Live Cell Elimination

Siavash Monfared et al.Aug 18, 2021
A
J
G
S
Cell layers eliminate unwanted cells through the extrusion process, which underlines healthy versus flawed tissue behaviors. Although several biochemical pathways have been identified, the underlying mechanical basis including the forces involved in cellular extrusion remain largely unexplored. Utilizing a phase-field model of a three-dimensional cell layer, we study the interplay of cell extrusion with cell-cell and cell-substrate interactions, in a monolayer. Independent tuning of cell-cell versus cell-substrate adhesion forces in the model reveals that a higher cell-substrate adhesion leads to a lower number of total extrusion events. We find extrusion events to be linked to both half-integer topological defects in the orientation field of the cells and to five-fold disclinations in cellular arrangements. We also show that increasing the relative cell-cell adhesion forces translates into a higher likelihood for an extrusion event to be associated with a five-fold disclination and a weaker correlation with +1/2 topological defects. We unify our findings by accessing mechanical stress fields: an extrusion event acts as a mechanism to relieve localized stress concentration.
1
Citation2
0
Save
0

Emergent collective alignment gives competitive advantage to longer cells during range expansion

Nathan Berg et al.Jan 27, 2024
+7
T
K
N
ABSTRACT Bacteria’s competition for nutrients and territory drives biofilm evolution (1–4). The factors determining the outcome of competition among diverse bacterial species have a broad impact on a wide range of pathological (5), environmental (6), and microbiome interactions (7). While motility-related traits (8–11) and specific molecular mechanisms (12, 13) have been identified as potential winning attributes in bacteria, a shared and universally conserved feature determining competition remains elusive. Here, we demonstrate that a simple morphological feature of individual bacteria, cell aspect ratio, provides a winning trait for the population. Using range expansion experiments (14), we show that relatively longer bacteria robustly conquer the expanding front, even when initially in minority. Using an agent-based model of dividing bacteria, we reveal that the takeover mechanism is their emergent collective alignment: groups of locally aligned bacteria form “nematic arms” bridging the central region of the colony to the expanding front. Once at the front, bacteria align parallel to it and block the access of shorter bacteria to nutrients and space. We confirm this observation with single-cell experiments and further generalise our findings by introducing a generic continuum model of alignment-dominated competition, explaining both experimental and cell-based model observations. Moreover, we extend our predictions to spherical range expansions (15) and confirm the competitive advantage of being longer, even though the effect is less pronounced than in surface-attached colonies. Our results uncover a simple, yet hitherto overlooked, mechanical mechanism determining the outcome of bacterial competition, which is potentially ubiquitous among various bacteria. With the current advances in genetic engineering, varying aspect ratios can work as a simple tunable mechanism for the on-demand setting of the outcome of bacterial competitions with widespread implications for biofilm control.
9

Wrinkle force microscopy: a new machine learning based approach to predict cell mechanics from images

Honghan Li et al.Feb 1, 2021
+4
T
D
H
Combining experiments with artificial intelligence algorithms, we propose a new machine learning based approach to extract the cellular force distributions from the microscope images. The full process can be divided into three steps. First, we culture the cells on a special substrate allowing to measure both the cellular traction force on the substrate and the corresponding substrate wrinkles simultaneously. The cellular forces are obtained using the traction force microscopy (TFM), at the same time that cell-generated contractile forces wrinkle their underlying substrate. Second, the wrinkle positions are extracted from the microscope images. Third, we train the machine learning system with GAN (generative adversarial network) by using sets of corresponding two images, the traction field and the input images (raw microscope images or extracted wrinkle images), as the training data. The network understands the way to convert the input images of the substrate wrinkles to the traction distribution from the training. After sufficient training, the network is utilized to predict the cellular forces just from the input images. Our system provides a powerful tool to evaluate the cellular forces efficiently because the forces can be predicted just by observing the cells under the microscope, which is a way simpler method compared to the TFM experiment. Additionally, the machine learning based approach presented here has the profound potential for being applied to diverse cellular assays for studying mechanobiology of cells. Significance Statement Cell-generated forces are indispensable determinants of fundamental cell functions such as motility and cell division. As such, quantifying how the forces change upon perturbations to the cells such as gene mutations and drug administration is of profound importance. Here we present a novel machine learning based system that allows for efficient estimations of the forces that are determined only by “observing” microscope images. Given that the cellular traction forces are regulated downstream of diverse signaling pathways, our system – that helps significantly improve the throughput of the measurements – presents a new, high throughput platform for real time analysis of the effects of a massive number of genetic and molecular perturbations on the forces and resulting cell mechanics.
0

Periodic orbits, pair nucleation, and unbinding of active nematic defects on cones

Farzan Vafa et al.Jun 7, 2024
A
D
F
Geometric confinement and topological constraints present promising means of controlling active materials. By combining analytical arguments derived from the Born-Oppenheimer approximation with numerical simulations, we investigate the simultaneous impact of confinement together with curvature singularity by characterizing the dynamics of an active nematic on a cone. Here, the Born-Oppenheimer approximation means that textures can follow defect positions rapidly on the timescales of interest. Upon imposing strong anchoring boundary conditions at the base of a cone, we find a rich phase diagram of multidefect dynamics, including exotic periodic orbits of one or two +1/2 flank defects, depending on activity and nonquantized geometric charge at the cone apex. By characterizing the transitions between these ordered dynamical states, we present detailed understanding of (i) defect unbinding, (ii) defect absorption, and (iii) defect pair nucleation at the apex. Numerical simulations confirm theoretical predictions of not only the nature of the circular orbits but also defect unbinding from the apex.
1

Differential elasticity in lineage segregation of embryonic stem cells

Christine Ritter et al.Sep 21, 2022
+3
Y
N
C
The question of what guides lineage segregation is central to development, where cellular differentiation leads to segregated cell populations destined for specialized functions. Here, using optical tweezers measurements of mouse embryonic stem cells (mESCs), we reveal a mechanical mechanism based on differential elasticity in the second lineage segregation of the embryonic inner cell mass into epiblast (EPI) cells – that will develop into the fetus – and primitive endoderm (PrE) – which will form extraembryonic structures such as the yolk sac. Remarkably, we find that these mechanical differences already occur during priming and not just after a cell has committed to differentiation. Specifically, we show that the mESCs are highly elastic compared to any other reported cell type and that the PrE cells are significantly more elastic than EPI-primed cells. Using a model of two cell types differing only in elasticity we show that differential elasticity alone can lead to segregation between cell types, suggesting that the mechanical attributes of the cells contribute to the segregation process. Our findings present differential elasticity as a previously unknown mechanical contributor to the lineage segregation during the embryo morphogenesis.
1
Citation1
0
Save
11

Spatiotemporal model of cellular mechanotransduction via Rho and YAP

Javor Novev et al.Nov 9, 2020
A
M
M
J
Abstract How cells sense and respond to mechanical stimuli remains an open question. Recent advances have identified the translocation of Yes-associated protein (YAP) between nucleus and cytoplasm as a central mechanism for sensing mechanical forces and regulating mechanotransduction. We formulate a spatiotemporal model of the mechanotransduction signalling pathway that includes coupling of YAP with the cell force-generation machinery through the Rho family of GTPases. Considering the active and inactive forms of a single Rho protein (GTP/GDP-bound) and of YAP (non-phosphorylated/phosphorylated), we study the cross-talk between cell polarization due to active Rho and YAP activation through its nuclear localization. For fixed mechanical stimuli, our model predicts stationary nuclear-to-cytoplasmic YAP ratios consistent with experimental data at varying adhesive cell area. We further predict damped and even sustained oscillations in the YAP nuclear-to-cytoplasmic ratio by accounting for recently reported positive and negative YAP-Rho feedback. Extending the framework to time-varying mechanical stimuli that simulate cyclic stretching and compression, we show that the YAP nuclear-to-cytoplasmic ratio’s time dependence follows that of the cyclic mechanical stimulus. The model presents one of the first frameworks for understanding spatiotemporal YAP mechanotransduction, providing several predictions of possible YAP localization dynamics, and suggesting new directions for experimental and theoretical studies.
0

Sustained oscillations of epithelial cell sheets

Grégoire Peyret et al.Dec 10, 2018
+8
J
P
G
Morphological changes during development, tissue repair, and disease largely rely on coordinated cell movements and are controlled by the tissue environment. Epithelial cell sheets are often subjected to large scale deformation during tissue formation. The active mechanical environment in which epithelial cells operate have the ability to promote collective oscillations, but how these cellular movements are generated and relate to collective migration remains unclear. Here, combining in vitro experiments and computational modelling we describe a novel mode of collective oscillations in confined epithelial tissues where the oscillatory motion is the dominant contribution to the cellular movements. We show that epithelial cells exhibit large-scale coherent oscillations when constrained within micro-patterns of varying shapes and sizes, and that their period and amplitude are set by the smallest confinement dimension. Using molecular perturbations, we then demonstrate that force transmission at cell-cell junctions and its coupling to cell polarity are pivotal for the generation of these collective movements. We find that the resulting tissue deformations are sufficient to trigger mechanotransduction within cells, potentially affecting a wide range of cellular processes.
Load More