SC
Simon Cleary
Author with expertise in Role of Neutrophil Extracellular Traps in Immunity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
6
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
54

Global Absence and Targeting of Protective Immune States in Severe COVID-19

Alexis Combes et al.Oct 29, 2020
+36
N
T
A
While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a whole-blood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and auto-directed antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.In severe COVID-19 patients, the immune system fails to generate cells that define mild disease; antibodies in their serum actively prevents the successful production of those cells.
54
Citation4
0
Save
11

CD98 is critical for a conserved inflammatory response to diverse injury stimuli relevant to IPF exacerbations and COVID pneumonitis

Panayiota Stylianou et al.Aug 15, 2022
+23
W
S
P
Abstract Progressive fibrosing interstitial lung diseases (PFILDs) cause substantial morbidity and mortality. Antifibrotic agents slow progression, but most of the clinical need remains unmet. The archetypal PFILD is idiopathic pulmonary fibrosis (IPF). Chronic progression is driven by transforming growth factor (TGF-)β1 signalling. It is punctuated by inflammatory flares known as acute exacerbations (AE-IPF), which are associated with accelerated decline and high mortality. We hypothesized that acute injury responses underlying exacerbations and the mechanisms of chronic fibrosis overlap at the molecular level, via a cell surface assembly nucleated by galectin-3 that we term the ‘gal-3-fibrosome’. We focused upon a putative pro-inflammatory galectin-3 ligand, the CD98:integrin complex. Our data indicate CD98 and β1-integrin co-localise with galectin-3 within epithelial cells in IPF lung tissue, and within 40 nm in human lung tissue treated with TGF-β1 compared to controls. CD98 is required for interleukin (IL-)6 and IL-8 responses to biochemical and biophysical conditions mimicking stimuli of AE-IPF in vivo , ex vivo and in cells, and for an interstitial neutrophilic response in a mouse model. We demonstrate this pathway progresses via intracellular influx of Ca 2+ mediated by TRPV4, and NF-κB activation, operating in positive feedback. Lastly we show the CD98- and galectin-3-dependence of IL-6 and IL-8 responses to the SARS-CoV-2 spike protein receptor binding domain and the conservation of this response pattern between lung epithelial cells and monocyte-derived macrophages. Taken together our findings identify CD98 as a key mediator of both pro-fibrotic and acute inflammatory responses in the lung with relevance to AE- and chronic progression of IPF, and the priming of fibrotic lungs for acute inflammatory responses. They similarly implicate CD98 and galectin-3 as mediators of COVID pneumonitis and worse outcomes in ILD patients with COVID.
11
Citation2
0
Save
0

Loss of neutrophil Shp1 produces hemorrhagic and lethal acute lung injury

SF Moussavi-Harami et al.May 28, 2024
+8
M
S
S
Abstract The acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1 knockout mice suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo . We propose that the pharmacologic activation of Shp1 has the potential to fine-tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
0

Spleen tyrosine kinase inhibition mitigates hemin-induced thromboinflammation in the lung and kidney of sickle cell mice

Juma El-Awaisi et al.May 7, 2024
+10
P
A
J
Abstract Sickle cell disease (SCD) leads to hemolytic anemia, vaso-occlusive crisis (VOC), hypoperfusion, and progressive organ damage. Hemin, released during hemolysis in SCD, induces platelet activation through CLEC-2, endothelial activation through TLR4, neutrophil adhesion and NETosis, all of which are regulated by spleen tyrosine kinase (Syk). In this study, we assessed neutrophil and platelet recruitment to the pulmonary, renal, splenic, and hepatic microvasculature in control and SCD mice following hemin injection and the effect of Syk inhibition on cell recruitment and organ perfusion. Compared to controls, SCD mice exhibited higher baseline neutrophil and platelet recruitment to the lungs without alterations in lung perfusion as measured by laser speckle contrast imaging. Injection of hemin increased cell recruitment to the pulmonary and renal vasculature with a concomitant reduction in organ perfusion. However, hemin injection did not change cell recruitment or organ perfusion in the spleen and liver, both of which were altered at baseline in SCD mice. Pretreatment of SCD mice with the Syk inhibitor BI-1002494 mitigated baseline and hemin-induced neutrophil and platelet adhesion in the pulmonary and renal microvasculature, with a corresponding normalization of perfusion. Syk regulates vascular integrity in the lung of SCD mice; whilst high concentrations of BI-1002494 increased bleeding, lowering drug concentrations preserved the inhibitory effect on platelet and neutrophil recruitment and lung perfusion and protected from bleeding complications. These data substantiate Syk as a mediator of vascular thrombo-inflammation and hypoperfusion in the lung and kidney of SCD and provide a rationale for pharmacological inhibition as a therapeutic strategy.
5

Optimizing anesthesia and delivery approaches for dosing into lungs of mice

Yurim Seo et al.Feb 3, 2023
+4
M
L
Y
Microbes, toxins, therapeutics and cells are often instilled into lungs of mice to model diseases and test experimental interventions. Consistent pulmonary delivery is critical for experimental power and reproducibility, but we observed variation in outcomes between handlers using different anesthetic approaches for intranasal dosing into mice. We therefore used a radiotracer to quantify lung delivery after intranasal dosing under inhalational (isoflurane) versus injectable (ketamine/xylazine) anesthesia in C57BL/6 mice. We found that ketamine/xylazine anesthesia resulted in delivery of a greater proportion (52±9%) of an intranasal dose to lungs relative to isoflurane anesthesia (30±15%). This difference in pulmonary dose delivery altered key outcomes in models of viral and bacterial pneumonia, with mice anesthetized with ketamine/xylazine for intranasal infection with influenza A virus or Pseudomonas aeruginosa developing more robust lung inflammation responses relative to control animals randomized to isoflurane anesthesia. Pulmonary dosing efficiency through oropharyngeal aspiration was not affected by anesthetic method and resulted in delivery of 63±8% of dose to lungs, and a non-surgical intratracheal dosing approach further increased lung delivery to 92±6% of dose. Use of either of these more precise dosing methods yielded greater experimental power in the bacterial pneumonia model relative to intranasal infection. Both anesthetic approach and dosing route can impact pulmonary dosing efficiency. These factors affect experimental power and so should be considered when planning and reporting studies involving delivery of fluids to lungs of mice.
0

Imaging the Granzyme Mediated Host Immune Response to Viral and Bacterial Pathogens In Vivo Using Positron Emission Tomography

Apurva Pandey et al.May 31, 2024
+9
S
S
A
Understanding how the host immune system engages complex pathogens is essential to developing therapeutic strategies to overcome their virulence. While granzymes are well understood to trigger apoptosis in infected host cells or bacteria, less is known about how the immune system mobilizes individual granzyme species in vivo to combat diverse pathogens. Toward the goal of studying individual granzyme function directly in vivo, we previously developed a new class of radiopharmaceuticals termed "restricted interaction peptides (RIPs)" that detect biochemically active endoproteases using positron emission tomography (PET). In this study, we showed that secreted granzyme B proteolysis in response to diverse viral and bacterial pathogens could be imaged with [64Cu]Cu-GRIP B, a RIP that specifically targets granzyme B. Wild-type or germline granzyme B knockout mice were instilled intranasally with the A/PR/8/34 H1N1 influenza A strain to generate pneumonia, and granzyme B production within the lungs was measured using [64Cu]Cu-GRIP B PET/CT. Murine myositis models of acute bacterial (E. coli, P. aeruginosa, K. pneumoniae, and L. monocytogenes) infection were also developed and imaged using [64Cu]Cu-GRIP B. In all cases, the mice were studied in vivo using mPET/CT and ex vivo via tissue-harvesting, gamma counting, and immunohistochemistry. [64Cu]Cu-GRIP B uptake was significantly higher in the lungs of wild-type mice that received A/PR/8/34 H1N1 influenza A strain compared to mice that received sham or granzyme B knockout mice that received either treatment. In wild-type mice, [64Cu]Cu-GRIP B uptake was significantly higher in the infected triceps muscle versus normal muscle and the contralateral triceps inoculated with heat killed bacteria. In granzyme B knockout mice, [64Cu]Cu-GRIP B uptake above the background was not observed in the infected triceps muscle. Interestingly, live L. monocytogenes did not induce detectable granzyme B on PET, despite prior in vitro data, suggesting a role for granzyme B in suppressing their pathogenicity. In summary, these data show that the granzyme response elicited by diverse human pathogens can be imaged using PET. These results and data generated via additional RIPs specific for other granzyme proteases will allow for a deeper mechanistic study analysis of their complex in vivo biology.
0

Reply: The importance of disrupting complement activation in acute lung injury

Simon Cleary et al.Jun 16, 2024
M
S
We appreciate the letter from Kapur and colleagues and are glad to be in agreement on the importance of the complement cascade in experimental transfusion-related acute lung injury (TRALI) (1).We have also measured increased complement activation in clinical TRALI (2), but as complement deposition and lung injury occur within a few minutes in mouse models of TRALI (2, 3), and various mitigation strategies have been effective in preventing clinical TRALI (4), we struggle to take an optimistic view on therapeutic or prophylactic use of complement inhibitors to ameliorate or prevent TRALI.We are hopeful that recombinant IgG Fc hexamers or complement therapeutics might improve outcomes in patients at high risk of developing antibody-mediated rejection (AbMR) following solid-organ transplantation or in other diseases, such as COVID-19.Recent approvals of therapeutics targeting IgG (imlifidase for desensitization to prevent AbMR, ref.5) or C1s (sutimlimab for cold agglutinin disease, ref. 6) demonstrate that inhibiting "upstream" antibody effectors is feasible, and these approaches would be expected to preserve some of the immune protection mediated by membrane attack complexes.Determining the importance of IgG Fc-Fc interactions and different complement components in antibody-mediated diseases will help to improve diagnostics and therapeutics.
0

IgG hexamers initiate acute lung injury

Simon Cleary et al.Jan 27, 2024
+8
J
Y
S
Abstract Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, transfusion reactions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. A previously overlooked step in complement activation by IgG antibodies has been elucidated involving interactions between IgG Fc domains that enable assembly of IgG hexamers, which can optimally activate the complement cascade. Here, we tested the in vivo relevance of IgG hexamers in a complement-dependent alloantibody model of acute lung injury. We used three approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from Staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer ‘decoy’ therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate a direct in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases. Brief summary IgG antibodies can form hexamers. This study shows that hexamer assembly is an important event determining the ability of IgG to trigger acute lung injury. Graphical abstract