JL
John Lukens
Author with expertise in Molecular Mechanisms of Inflammasome Activation and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(57% Open Access)
Cited by:
1,338
h-index:
43
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature

Antoine Louveau et al.Sep 17, 2018
Neuroinflammatory diseases, such as multiple sclerosis, are characterized by invasion of the brain by autoreactive T cells. The mechanism for how T cells acquire their encephalitogenic phenotype and trigger disease remains, however, unclear. The existence of lymphatic vessels in the meninges indicates a relevant link between the CNS and peripheral immune system, perhaps affecting autoimmunity. Here we demonstrate that meningeal lymphatics fulfill two critical criteria: they assist in the drainage of cerebrospinal fluid components and enable immune cells to enter draining lymph nodes in a CCR7-dependent manner. Unlike other tissues, meningeal lymphatic endothelial cells do not undergo expansion during inflammation, and they express a unique transcriptional signature. Notably, the ablation of meningeal lymphatics diminishes pathology and reduces the inflammatory response of brain-reactive T cells during an animal model of multiple sclerosis. Our findings demonstrate that meningeal lymphatics govern inflammatory processes and immune surveillance of the CNS and pose a valuable target for therapeutic intervention. Louveau et al. demonstrate that meningeal lymphatics drain CSF-derived macromolecules and immune cells and play a key role in regulating neuroinflammation. Meningeal lymphatics may represent a new therapeutic target for multiple sclerosis.
0
Citation673
0
Save
0

NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens

Paras Anand et al.Jun 29, 2012
Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-κB (NF-κB), type I interferon and inflammasome signalling. Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis, but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-κB pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-κB- and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens.
0
Citation366
0
Save
0

Dietary modulation of the microbiome affects autoinflammatory disease

John Lukens et al.Sep 26, 2014
Pstpip2-mutant mice fed a high-fat diet are protected against inflammatory bone disease and bone erosion; this protection is associated with reductions in intestinal Prevotella levels and pro-IL-1β expression, and is dependent on the deletion of both caspases 1 and 8. It has been suggested that recent increases in the prevalence of autoinflammatory diseases may be due in part to dietary change, but the possible mechanisms involved remain poorly defined. This study shows that mice with a Pstpip2cmo mutant gene, a model for osteomyelitis, are fully protected against inflammatory bone disease and bone erosion when fed a diet rich in fat and cholesterol. Protection correlates with a shift in the intestinal microbiota, including marked reductions in Prevotella levels, and significantly reduced pro-interleukin-1β levels in circulating immune cells. The incidences of chronic inflammatory disorders have increased considerably over the past three decades1. Recent shifts in dietary consumption may have contributed importantly to this surge, but how dietary consumption modulates inflammatory disease is poorly defined. Pstpip2cmo mice, which express a homozygous Leu98Pro missense mutation in the Pombe Cdc15 homology family protein PSTPIP2 (proline-serine-threonine phosphatase interacting protein 2), spontaneously develop osteomyelitis that resembles chronic recurrent multifocal osteomyelitis in humans2,3,4. Recent reports demonstrated a crucial role for interleukin-1β (IL-1β) in osteomyelitis, but deletion of the inflammasome components caspase-1 and NLRP3 failed to rescue Pstpip2cmo mice from inflammatory bone disease5,6. Thus, the upstream mechanisms controlling IL-1β production in Pstpip2cmo mice remain to be identified. In addition, the environmental factors driving IL-1β-dependent inflammatory bone erosion are unknown. Here we show that the intestinal microbiota of diseased Pstpip2cmo mice was characterized by an outgrowth of Prevotella. Notably, Pstpip2cmo mice that were fed a diet rich in fat and cholesterol maintained a normal body weight, but were markedly protected against inflammatory bone disease and bone erosion. Diet-induced protection against osteomyelitis was accompanied by marked reductions in intestinal Prevotella levels and significantly reduced pro-IL-1β expression in distant neutrophils. Furthermore, pro-IL-1β expression was also decreased in Pstpip2cmo mice treated with antibiotics, and in wild-type mice that were kept under germ-free conditions. We further demonstrate that combined deletion of caspases 1 and 8 was required for protection against IL-1β-dependent inflammatory bone disease, whereas the deletion of either caspase alone or of elastase or neutrophil proteinase 3 failed to prevent inflammatory disease. Collectively, this work reveals diet-associated changes in the intestinal microbiome as a crucial factor regulating inflammasome- and caspase-8-mediated maturation of IL-1β and osteomyelitis in Pstpip2cmo mice.
0
Citation286
0
Save
0

Focused Ultrasound Blood-Brain Barrier Opening Arrests the Growth and Formation of Cerebral Cavernous Malformations

Delaney Fisher et al.Feb 4, 2024
BACKGROUND Cerebral cavernous malformations (CCM) are vascular lesions within the central nervous system, consisting of dilated and hemorrhage-prone capillaries. CCMs can cause debilitating neurological symptoms, and surgical excision or stereotactic radiosurgery are the only current treatment options. Meanwhile, transient blood-brain barrier opening (BBBO) with focused ultrasound (FUS) and microbubbles is now understood to exert potentially beneficial bioeffects, such as stimulation of neurogenesis and clearance of amyloid-β. Here, we tested whether FUS BBBO could be deployed therapeutically to control CCM formation and progression in a clinically-representative murine model. METHODS CCMs were induced in mice by postnatal, endothelial-specific Krit1 ablation. FUS was applied for BBBO with fixed peak-negative pressures (PNPs; 0.2-0.6 MPa) or passive cavitation detection-modulated PNPs. Magnetic resonance imaging (MRI) was used to target FUS treatments, evaluate safety, and measure longitudinal changes in CCM growth after BBBO. RESULTS FUS BBBO elicited gadolinium accumulation primarily at the perilesional boundaries of CCMs, rather than lesion cores. Passive cavitation detection and gadolinium contrast enhancement were comparable in CCM and wild-type mice, indicating that Krit1 ablation does not confer differential sensitivity to FUS BBBO. Acutely, CCMs exposed to FUS BBBO remained structurally stable, with no signs of hemorrhage. Longitudinal MRI revealed that FUS BBBO halted the growth of 94% of CCMs treated in the study. At 1 month, FUS BBBO-treated lesions lost, on average, 9% of their pre-sonication volume. In contrast, non-sonicated control lesions grew to 670% of their initial volume. Lesion control with FUS BBBO was accompanied by a marked reduction in the area and mesenchymal appearance of Krit mutant endothelium. Strikingly, in mice receiving multiple BBBO treatments with fixed PNPs, de novo CCM formation was significantly reduced by 81%. Mock treatment plans on MRIs of patients with surgically inaccessible lesions revealed their lesions are amenable to FUS BBBO with current clinical technology. CONCLUSIONS Our results establish FUS BBBO as a novel, non-invasive modality that can safely arrest murine CCM growth and prevent their de novo formation. As an incisionless, MR image-guided therapy with the ability to target eloquent brain locations, FUS BBBO offers an unparalleled potential to revolutionize the therapeutic experience and enhance the accessibility of treatments for CCM patients.
1

The meningeal transcriptional response to traumatic brain injury and aging

Ashley Bolte et al.Jun 17, 2022
ABSTRACT Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders and can modulate neurodevelopment and behavior. While this has sparked great interest in the meninges, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one week post-injury. Then, using bulk RNA sequencing, we assessed the differential long-term outcomes between young and aged mice following a TBI. In our scRNA-seq studies, we found that mild head trauma leads to an activation of type I interferon (IFN) signature genes in meningeal macrophages as well as the mobilization of multiple distinct sub-populations of meningeal macrophages expressing hallmarks of either classically activated or wound healing macrophages. We also revealed that dural fibroblasts in the meningeal compartment are highly responsive to TBI, and pathway analysis identified differential expression of genes linked to various neurodegenerative diseases. For reasons that remain poorly understood, the elderly are especially vulnerable to head trauma, where even mild injuries can lead to rapid cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges from mice that had received a mild TBI or Sham treatment 1.5 months prior. Notably, we found that aging alone induced massive upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited massive upregulation of immune-related genes and markedly reduced expression of genes involved in extracellular matrix remodeling and maintenance of cellular junctions. Overall, these findings illustrate the dynamic and complex transcriptional response of the meninges to mild head trauma. Moreover, we also reveal how aging modulates the meningeal response to TBI.
1
Citation1
0
Save
0

Gasdermin-D-dependent IL-1α release from microglia promotes protective immunity during chronic Toxoplasma gondii infection

Samantha Batista et al.Jan 23, 2020
Microglia, the resident immune cells of the brain parenchyma, are thought to be first-line defenders against CNS infections. We sought to identify specific roles of microglia in the control of the eukaryotic parasite Toxoplasma gondii, an opportunistic infection that can cause severe neurological disease. In order to identify the specific function of microglia in the brain during infection, we sorted microglia and infiltrating myeloid cells from infected microglia reporter mice. Using RNA-sequencing, we find strong NF-kB and inflammatory cytokine signatures overrepresented in blood-derived macrophages versus microglia. Interestingly, we also find that IL-1 alpha is enriched in microglia and IL-1 beta in macrophages, which was also evident at the protein level. We find that mice lacking IL-1R1 or IL-1 alpha, but not IL-1 beta, have impaired parasite control and immune cell infiltration specifically within the brain. Further, by sorting purified populations from infected brains, we show that microglia, not peripheral myeloid cells, release IL-1 alpha ex vivo. Finally, using knockout mice as well as chemical inhibition, we show that ex vivo IL-1 alpha release is gasdermin-D dependent, and that gasdermin-D and caspase-1/11 deficient mice show deficits in immune infiltration into the brain and parasite control. These results demonstrate that microglia and macrophages are differently equipped to propagate inflammation, and that in chronic T. gondii infection, microglia specifically can release the alarmin IL-1 alpha, a cytokine that promotes neuroinflammation and parasite control.
0

Caspase-1 inCx3cr1-expressing cells drives an IL-18-dependent T cell response that promotes parasite control during acuteT. gondiiinfection

Isaac Babcock et al.Jan 31, 2024
ABSTRACT Inflammasome activation is a robust innate immune mechanism that promotes inflammatory responses through the release of alarmins and leaderless cytokines, including IL-1α, IL-1β, and IL-18. Various stimuli, including infectious agents and cellular stress, cause inflammasomes to assemble and activate caspase-1. Then, caspase-1 cleaves targets that lead to pore formation and leaderless cytokine activation and release. Toxoplasma gondii has been shown to promote inflammasome formation, but the cell types utilizing caspase-1 and the downstream effects on immunological outcomes during acute in vivo infection have not been explored. Here, using knockout mice, we examine the role of caspase-1 responses during acute T. gondii infection globally and in Cx3cr1 -positive populations. We provide in vivo evidence that caspase-1 expression is critical for, IL-18 release, optimal interferon-γ (IFN-ψ) production, monocyte and neutrophil recruitment to the site of infection, and parasite control. Specifically, we find that caspase-1 expression in Cx3cr1 -positive cells drives IL-18 release, which potentiates CD4 + T cell IFN-γ production and parasite control. Notably, our Cx3cr1 - Casp1 knockouts exhibited a selective T cell defect, mirroring the phenotype observed in Il18 knockouts. In further support of this finding, treatment of Cx3cr1 - Casp1 knockout mice with recombinant IL-18 restored CD4 + T cell IFN-γ responses and parasite control. Additionally, we show that neutrophil recruitment is dependent on IL-1 receptor accessory protein (IL-1RAP) signaling but is dispensable for parasite control. Overall, these experiments highlight the multifaceted role of caspase-1 in multiple cell populations contributing to specific pathways that collectively contribute to caspase-1 dependent immunity to T. gondii . AUTHOR SUMMARY When a cell undergoes inflammatory cell death, termed pyroptosis, cellular content is released and has the potential to stimulate immune responses. Our work highlights that in the context of T. gondii infection, distinct cell populations undergo pyroptosis each of which has different impacts on how the immune system responds. These findings suggest a collaborative effort of multiple cell types undergoing pyroptosis for optimal immunity to infection. Using a cell-type specific knockout to render macrophages incapable of undergoing pyroptosis, we find that macrophage pyroptosis reinforces adaptive immune cell function, while other population’s pyroptosis stimulates the recruitment of innate immune cells into the infected tissue. We go on to identify a specific molecule, IL-18, is released from macrophage pyroptosis that reinforces adaptive immune cell function. By reintroducing IL-18 into the macrophage knockout mice, we successfully restored adaptive immune cell function thereby facilitating the recovery of parasite control. This study outlines the impact of pyroptosis on immunity to T. gondii and stratifies the effects from separate cell populations and their associated downstream pathways.
0

Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis

Ashley Bolte et al.Oct 24, 2019
Traumatic brain injury (TBI) has emerged as a leading cause of death and disability. Despite being a growing medical issue, the biological factors that promote central nervous system (CNS) pathology and neurological dysfunction following TBI remain poorly characterized. Recently, the meningeal lymphatic system was identified as a critical mediator of drainage from the CNS. In comparison to other peripheral organs, our understanding of how defects in lymphatic drainage from the CNS contribute to disease is limited. It is still unknown how TBI impacts meningeal lymphatic function and whether disruptions in this drainage pathway are involved in driving TBI pathogenesis. Here we demonstrate that even mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that can last out to at least two weeks post-injury. To investigate a mechanism behind impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics, as increased ICP commonly occurs in TBI. We demonstrate that increased ICP is capable of provoking meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction mediated by targeted photoablation before TBI leads to increased neuroinflammation and cognitive deficits. These findings provide new insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.
Load More