AB
Andrew Brooks
Author with expertise in Diversity and Function of Gut Microbiome
Stanford University, United Nations Children's Fund, Vanderbilt University
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
426
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Pre-symptomatic detection of COVID-19 from smartwatch data

Tejaswini Mishra et al.Nov 28, 2020
+18
A
M
T
Consumer wearable devices that continuously measure vital signs have been used to monitor the onset of infectious disease. Here, we show that data from consumer smartwatches can be used for the pre-symptomatic detection of coronavirus disease 2019 (COVID-19). We analysed physiological and activity data from 32 individuals infected with COVID-19, identified from a cohort of nearly 5,300 participants, and found that 26 of them (81%) had alterations in their heart rate, number of daily steps or time asleep. Of the 25 cases of COVID-19 with detected physiological alterations for which we had symptom information, 22 were detected before (or at) symptom onset, with four cases detected at least nine days earlier. Using retrospective smartwatch data, we show that 63% of the COVID-19 cases could have been detected before symptom onset in real time via a two-tiered warning system based on the occurrence of extreme elevations in resting heart rate relative to the individual baseline. Our findings suggest that activity tracking and health monitoring via consumer wearable devices may be used for the large-scale, real-time detection of respiratory infections, often pre-symptomatically.
14
Citation335
1
Save
1

Real-time alerting system for COVID-19 and other stress events using wearable data

Arash Alavi et al.Nov 1, 2023
+26
M
G
A
Abstract Early detection of infectious diseases is crucial for reducing transmission and facilitating early intervention. In this study, we built a real-time smartwatch-based alerting system that detects aberrant physiological and activity signals (heart rates and steps) associated with the onset of early infection and implemented this system in a prospective study. In a cohort of 3,318 participants, of whom 84 were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this system generated alerts for pre-symptomatic and asymptomatic SARS-CoV-2 infection in 67 (80%) of the infected individuals. Pre-symptomatic signals were observed at a median of 3 days before symptom onset. Examination of detailed survey responses provided by the participants revealed that other respiratory infections as well as events not associated with infection, such as stress, alcohol consumption and travel, could also trigger alerts, albeit at a much lower mean frequency (1.15 alert days per person compared to 3.42 alert days per person for coronavirus disease 2019 cases). Thus, analysis of smartwatch signals by an online detection algorithm provides advance warning of SARS-CoV-2 infection in a high percentage of cases. This study shows that a real-time alerting system can be used for early detection of infection and other stressors and employed on an open-source platform that is scalable to millions of users.
1
Citation78
0
Save
1

Real-time Alerting System for COVID-19 Using Wearable Data

Arash Alavi et al.Nov 1, 2023
+23
M
G
A
Early detection of infectious disease is crucial for reducing transmission and facilitating early intervention. We built a real-time smartwatch-based alerting system for the detection of aberrant physiological and activity signals (e.g. resting heart rate, steps) associated with early infection onset at the individual level. Upon applying this system to a cohort of 3,246 participants, we found that alerts were generated for pre-symptomatic and asymptomatic COVID-19 infections in 78% of cases, and pre-symptomatic signals were observed a median of three days prior to symptom onset. Furthermore, by examining over 100,000 survey annotations, we found that other respiratory infections as well as events not associated with COVID-19 (e.g. stress, alcohol consumption, travel) could trigger alerts, albeit at a lower mean period (1.9 days) than those observed in the COVID-19 cases (4.3 days). Thus this system has potential both for advanced warning of COVID-19 as well as a general system for measuring health via detection of physiological shifts from personal baselines. The system is open-source and scalable to millions of users, offering a personal health monitoring system that can operate in real time on a global scale.
1
Citation6
0
Save
1

Early detection of SARS‐CoV‐2 and other infections in solid organ transplant recipients and household members using wearable devices

Brendan Keating et al.Nov 1, 2023
+42
E
E
B
Transplant InternationalVolume 34, Issue 6 p. 1019-1031 ReviewOpen Access Early detection of SARS-CoV-2 and other infections in solid organ transplant recipients and household members using wearable devices Brendan J. Keating, Corresponding Author Brendan J. Keating [email protected] orcid.org/0000-0002-3320-3723 Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Correspondence Brendan J. Keating D.Phil, Division of Transplantation, Department of Surgery, University of Pennsylvania, Office 414A Stemmler Building, 3450 Hamilton Walk, Philadelphia PA, 19104, USA. Tel: +1 267-760-4507; fax: +1 215-662-2244; e-mail: [email protected]Search for more papers by this authorEyas H. Mukhtar, Eyas H. Mukhtar Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric D. Elftmann, Eric D. Elftmann Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorFeyisope R. Eweje, Feyisope R. Eweje Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorHui Gao, Hui Gao Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorLina I. Ibrahim, Lina I. Ibrahim Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorRanganath G. Kathawate, Ranganath G. Kathawate Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorAlexander C. Lee, Alexander C. Lee Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric H. Li, Eric H. Li Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorKrista A. Moore, Krista A. Moore Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorNikhil Nair, Nikhil Nair Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorVenkata Chaluvadi, Venkata Chaluvadi Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorJanaiya Reason, Janaiya Reason Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorFrancesca Zanoni, Francesca Zanoni Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorAlexander T. Honkala, Alexander T. Honkala Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmein K. Al-Ali, Amein K. Al-Ali Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaSearch for more papers by this authorFatima Abdullah Alrubaish, Fatima Abdullah Alrubaish Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorMaha Ahmad Al-Mozaini, Maha Ahmad Al-Mozaini Immunocompromised Host Research, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorFahad A. Al-Muhanna, Fahad A. Al-Muhanna Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorKhaldoun Al-Romaih, Khaldoun Al-Romaih National Centre of Genomic Technology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorSamuel B. Goldfarb, Samuel B. Goldfarb Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRyan Kellogg, Ryan Kellogg Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorKrzysztof Kiryluk, Krzysztof Kiryluk Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorSarah J. Kizilbash, Sarah J. Kizilbash Department of Pediatrics, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorTaisa J. Kohut, Taisa J. Kohut Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorJuhi Kumar, Juhi Kumar Weill Cornell Medical College, New York, NY, USASearch for more papers by this authorMatthew J. O'Connor, Matthew J. O'Connor Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorElizabeth B. Rand, Elizabeth B. Rand Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRobert R. Redfield, Robert R. Redfield Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorBenjamin Rolnik, Benjamin Rolnik Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorJoseph Rossano, Joseph Rossano Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPablo G. Sanchez, Pablo G. Sanchez Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USASearch for more papers by this authorArash Alavi, Arash Alavi Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmir Bahmani, Amir Bahmani Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorGireesh K. Bogu, Gireesh K. Bogu Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAndrew W. Brooks, Andrew W. Brooks Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAhmed A Metwally, Ahmed A Metwally Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorTejas Mishra, Tejas Mishra Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorStephen D. Marks, Stephen D. Marks Great Ormond Street Hospital for Children, NHS Foundation Trust London, London, UK NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, London, UKSearch for more papers by this authorRobert A. Montgomery, Robert A. Montgomery New York University Langone Transplant Institute, New York, NY, USASearch for more papers by this authorJay A. Fishman, Jay A. Fishman Transplant Infectious Disease Program, Infectious Disease Division, and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USASearch for more papers by this authorSandra Amaral, Sandra Amaral Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPamala A. Jacobson, Pamala A. Jacobson Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorMeng Wang, Meng Wang Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorMichael P. Snyder, Michael P. Snyder Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this author Brendan J. Keating, Corresponding Author Brendan J. Keating [email protected] orcid.org/0000-0002-3320-3723 Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Correspondence Brendan J. Keating D.Phil, Division of Transplantation, Department of Surgery, University of Pennsylvania, Office 414A Stemmler Building, 3450 Hamilton Walk, Philadelphia PA, 19104, USA. Tel: +1 267-760-4507; fax: +1 215-662-2244; e-mail: [email protected]Search for more papers by this authorEyas H. Mukhtar, Eyas H. Mukhtar Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric D. Elftmann, Eric D. Elftmann Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorFeyisope R. Eweje, Feyisope R. Eweje Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorHui Gao, Hui Gao Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorLina I. Ibrahim, Lina I. Ibrahim Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorRanganath G. Kathawate, Ranganath G. Kathawate Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorAlexander C. Lee, Alexander C. Lee Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric H. Li, Eric H. Li Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorKrista A. Moore, Krista A. Moore Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorNikhil Nair, Nikhil Nair Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorVenkata Chaluvadi, Venkata Chaluvadi Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorJanaiya Reason, Janaiya Reason Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorFrancesca Zanoni, Francesca Zanoni Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorAlexander T. Honkala, Alexander T. Honkala Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmein K. Al-Ali, Amein K. Al-Ali Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaSearch for more papers by this authorFatima Abdullah Alrubaish, Fatima Abdullah Alrubaish Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorMaha Ahmad Al-Mozaini, Maha Ahmad Al-Mozaini Immunocompromised Host Research, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorFahad A. Al-Muhanna, Fahad A. Al-Muhanna Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorKhaldoun Al-Romaih, Khaldoun Al-Romaih National Centre of Genomic Technology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorSamuel B. Goldfarb, Samuel B. Goldfarb Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRyan Kellogg, Ryan Kellogg Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorKrzysztof Kiryluk, Krzysztof Kiryluk Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorSarah J. Kizilbash, Sarah J. Kizilbash Department of Pediatrics, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorTaisa J. Kohut, Taisa J. Kohut Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorJuhi Kumar, Juhi Kumar Weill Cornell Medical College, New York, NY, USASearch for more papers by this authorMatthew J. O'Connor, Matthew J. O'Connor Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorElizabeth B. Rand, Elizabeth B. Rand Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRobert R. Redfield, Robert R. Redfield Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorBenjamin Rolnik, Benjamin Rolnik Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorJoseph Rossano, Joseph Rossano Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPablo G. Sanchez, Pablo G. Sanchez Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USASearch for more papers by this authorArash Alavi, Arash Alavi Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmir Bahmani, Amir Bahmani Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorGireesh K. Bogu, Gireesh K. Bogu Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAndrew W. Brooks, Andrew W. Brooks Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAhmed A Metwally, Ahmed A Metwally Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorTejas Mishra, Tejas Mishra Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorStephen D. Marks, Stephen D. Marks Great Ormond Street Hospital for Children, NHS Foundation Trust London, London, UK NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, London, UKSearch for more papers by this authorRobert A. Montgomery, Robert A. Montgomery New York University Langone Transplant Institute, New York, NY, USASearch for more papers by this authorJay A. Fishman, Jay A. Fishman Transplant Infectious Disease Program, Infectious Disease Division, and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USASearch for more papers by this authorSandra Amaral, Sandra Amaral Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPamala A. Jacobson, Pamala A. Jacobson Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorMeng Wang, Meng Wang Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorMichael P. Snyder, Michael P. Snyder Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this author First published: 18 March 2021 https://doi.org/10.1111/tri.13860AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Summary The increasing global prevalence of SARS-CoV-2 and the resulting COVID-19 disease pandemic pose significant concerns for clinical management of solid organ transplant recipients (SOTR). Wearable devices that can measure physiologic changes in biometrics including heart rate, heart rate variability, body temperature, respiratory, activity (such as steps taken per day) and sleep patterns, and blood oxygen saturation show utility for the early detection of infection before clinical presentation of symptoms. Recent algorithms developed using preliminary wearable datasets show that SARS-CoV-2 is detectable before clinical symptoms in >80% of adults. Early detection of SARS-CoV-2, influenza, and other pathogens in SOTR, and their household members, could facilitate early interventions such as self-isolation and early clinical management of relevant infection(s). Ongoing studies testing the utility of wearable devices such as smartwatches for early detection of SARS-CoV-2 and other infections in the general population are reviewed here, along with the practical challenges to implementing these processes at scale in pediatric and adult SOTR, and their household members. The resources and logistics, including transplant-specific analyses pipelines to account for confounders such as polypharmacy and comorbidities, required in studies of pediatric and adult SOTR for the robust early detection of SARS-CoV-2, and other infections are also reviewed. Introduction Post-transplant infectious disease complications are a leading cause of mortality in solid organ transplant recipients (SOTR) [1, 2. In particular, complications of respiratory infections have been shown to have devastating consequences in SOTR, with earlier diagnosis and treatment resulting in better outcomes [3. Recent prospective multicenter studies in adult SOTR with clinically managed influenza infection showed ~66–71% of recipients required hospitalization with >30% developing pneumonia and 11–16% requiring intensive care unit (ICU) admission with mortality rates of 4–4.6% [4, 5. Notably, SOTR who received antiviral treatment within 48 hours of influenza A (H1N1) symptom presentation showed decreased rates of ICU admission (8%) compared to those who received treatment after 48 h (22%) as well as decreased incidence of hospital admission and mechanical ventilation [4. The recent COVID-19 pandemic presents increased risk of severe SARS-CoV-2 infection in the immunosuppressed SOTR. Literature reviews show 16–28% COVID-related mortality rates in SOTR [6-8, although larger studies are needed to dissect known comorbidity/risk factors. The mean incubation period of SARS-CoV-2 reported in large studies varies from 5.7 days (95% CI, 5.1–6.4) to 7.7 days (95% CI 7.02–8.53) [9, 10. This period is longer than the median incubation periods for other common respiratory viral infections: influenza B = 0.6 days (95% CI 0.5–0.6); influenza A = 1.4 days (95% CI 1.3–1.5); rhinovirus = 1.9 days (95% CI 1.4–2.4); parainfluenza = 2.6 days (95% CI 2·1–3·1), SARS-CoV-1 = 4.0 days (95% CI 3·6–4·4); respiratory syncytial virus (RSV) = 4.4 days (95% CI 3.9–4.9) and adenovirus = 5.6 days (95% CI 4·8–6·3) [11. Furthermore, a number of recent studies have shown prolonged viral shedding, and meta-analyses show that SOTRs have higher viral burdens of SARS-CoV-2 [12-14 Importantly, a number of studies have estimated that up to 50% of individuals infected with SAR-CoV-2 have asymptomatic infection courses, which significantly increases the risk of viral spread in a household or care center [15, 16. The mean serial interval, a key parameter for assessing the dynamics of a disease, has been shown to range from 3.03 to 7.6 days for SAR-CoV-2 between the initial infectious person and the person they infect, indicating that there is ample time for transmission of SARS-CoV-2 within a household, or care facility, while individuals are in pre-symptomatic or asymptomatic phases of infection [17. Sequencing of airway microbiota in pneumonia patients with COVID-19 (n = 62) and without COVID-19 (n = 125) showed COVID-19 patients had more perturbed airway microbiota with identification of other potential pathogen in 47% of cases, of which 58% were respiratory viruses. In nasopharyngeal and sputum samples from COVID-19 patients, enrichment of other putative pathogenic microbes was identified, including respiratory syncytial viruses (RSV), influenza, and other opportunistic pathogen [18. Therefore, early detection of infection and early therapeutic intervention with promising corticosteroid and antibody-based regimens may be essential to mitigating the consequences of severe COVID-19 infection in SOTR. As of January 20th, 2021, over 291 million SARS-CoV-2 viral tests were performed in the United States and ~1.361 billion worldwide [19. With an asymptomatic incubation period up to ~14 days and wide heterogeneity in clinical symptoms, early detection of SARS-CoV-2 is imperative, yet there remain major barriers to widespread and continuous testing. Most existing testing platforms are not practical to administer on a daily/weekly basis due to transmission risks and significant logistical barriers. Furthermore, the results of diagnostic tests can take several days restricting the window for early intervention, contact tracing, and impeding data-driven healthcare decisions for high-risk individuals [20. Finally, there is understandable reluctance from SOTR and their families to enter healthcare settings for routine visits due to potential nosocomial SARS-CoV-2 exposure. The lengthy asymptomatic incubation period of SARS-CoV-2 and its remarkable transmissibility, combined with a presentation altered by immunosuppression, and polypharmacy among transplant populations, reflect the urgent need for tools that can detect pre-symptomatic infection. As SARS-CoV-2 sero-prevalence rises, more SOTR and family members will become infected, and many cases may not be detected early enough for effective intervention. Wearable devices In the last decade, advances in wearable devices such as fitness tracker smartwatches allow a range of important phenotypes to be measured and offer the potential to shift clinical care from being reactive to proactive. A study conducted in June 2019 showed that ~21% of the US population have, and regularly wear, a smartwatch55, and this trend appears to be increasing as they become more affordable. Generally, an increased heart rate (HR) of 10 beats per minute in children equates to an increase of one degree centigrade from their baseline temperature [21. While activity can impact HR short-term, prolonged periods of sustained HR increase over 12–36 hours may indicate a physiological reaction to infection. With the ability to monitor physiological parameters such as HR, body temperature, oxygen saturation (SpO2), blood pressure (BP), sleep and respiratory patterns, and electro-dermal activity, commercially available wearables provide the opportunity for real-time, continuous infection monitoring to complement conventional diagnostic tests. There are many commercially available wrist watches that utilize photoplethysmography (PPG) sensors which shine light into the skin and measure the reflection back to determine blood flow and color (green light is absorbed by hemoglobin). These blood flow measurements are used to determine HR, and to estimate BP and SpO2 [22. Inflatable wrist-cuffs can measure arterial pressure to find Oscillometric BP and some wearable devices use single-lead electrocardiography (ECG) to detect heart rhythm, for example, Apple Watch. Over the past few years, wearable devices have been rigorously explored for the detection and/or monitoring of pathologies across a range of diseases, including atrial fibrillation, Parkinson's disease, convulsive seizure onset, and continuous glucose monitoring in individuals with type 2 Diabetes [23-26. A growing number of studies have shown that wearable devices are also a powerful and promising tool for infection detection. While wearable technologies have yet to be extensively used for monitoring of SOTRs, a study of 88 Australian adult CKD and kidney transplant recipients, a clinical-grade wearable device measuring peripheral body temperature with an infrared thermopile correctly identified infection in 65 patients with 80% sensitivity and 98% specificity [27. Another study found that Bluetooth-enabled devices for at-home physiological monitoring of lung transplant recipients resulted in lower incidences of hospital readmissions [28. The at-home monitoring consisted of daily updates of BP, HR, weight, blood glucose, SpO2, pulmonary function, and activity levels, which could be measured using wearable devices. The rate of hospital readmission and readmission days with home monitoring versus standard care was 56% and 46% respectively, demonstrating the potential value of consistently monitoring SOTRs with wearable devices to reduce hospitalizations. One of the first studies to report using wearables to detect SARS-CoV-2 infection via smartwatches was published recently by a number of co-authors of this manuscript. Using primarily retrospective data from ~5,300 wearable devices, a focus was placed on individuals wearing similar devices where sufficient continuous and robust measurements were available [29. The algorithms studied three parameters: increased resting HR (RHR) relative to previous "healthy day" windows; increased HR to activity (step count) ratio; and sleep measures including sleep duration and time in wake/light/deep/REM stages. Wearables data from 32 individuals pre-, peri-, and post-SARS-CoV-2 confirmed infection, identified aberrant physiological signals associated with illness using various algorithms including proof-of-concept for real-time disease detection. The study showed that it is possible to identify infection prior to symptomatic onset using just three parameters using consumer-grade wearable devices. A similar study demonstrated that combining symptom data (fatigue, breathing difficulty, fever, etc.) with wearable sensor data (resting HR, sleep, and activity) resulted in greater ability to discriminate between COVID-19 and non-COVID-19 infection compared to symptoms alone (AUC 0.80 vs. 0.71, P < 0.01) [30. The recent TemPredict study, using Oura wearable ring data from 65,000 subjects, examined 50 COVID-19 confirmed cases and showed the ability to detect early signs of fever in 93% of the cases on average 3 days before symptoms manifest
1
Citation6
0
Save
4

Gut microbiota analyses of Saudi populations for type 2 diabetes-related phenotypes reveals significant association

Fahd Al-Muhanna et al.Oct 24, 2023
+18
A
A
F
Abstract Large-scale gut microbiome sequencing has revealed key links between microbiome dysfunction and metabolic diseases such as T2D. To date, these efforts have largely focused on Western populations, with few studies assessing T2D microbiota associations in Middle Eastern communities where T2D prevalence is now over 20%. We analyzed the composition of stool 16S rRNA from 461 T2D and 119 non-T2Dparticipants from the Eastern Province of Saudi Arabia. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples based on diabetes status and glucose level. We observed overall positive enrichment within diabetics compared to healthy individuals and amongst diabetic participants; those with high glucose levels exhibited slightly more positive enrichment compared to those at lower risk of fasting hyperglycemia. In particular, the genus Firmicutes was upregulated in diabetic participants compared to non-diabetic participants, and T2D was associated with an elevated Firmicutes/Bacteroidetes ratio, consistent with previous findings. Based on diabetes status and glucose levels of Saudi participants, relatively stable differences in stool composition were perceived by differential abundance and alpha diversity measures. Author summary The rates of Type 2 diabetes (T2D) in Saudi Arabia have risen dramatically in the last several decades due to socio-economic changes resulting in changes in dietary and sedentary lifestyles. This emergence has grown more rapidly and affects larger proportions of the population with estimates of T2D prevalence impacting 25% of the population. There is a paucity of microbiome data from Middle Eastern populations, and previous studies have been conducted on small sample sizes. Here we report on the first-ever characterization of gut microbiota T2D versus non-T2D and largest microbiome study ever conducted in a Middle Eastern country. The datasets from this study are important to create a regional reference T2D-microbiome catalogue which will propel the understanding of regional gut flora which are associated with T2D development. Based on T2D status and quantified glucose levels of Middle Eastern participants, relatively stable differences in stool composition were observed by differential abundance and alpha diversity measures. Comparing overlapping and varying patterns in gut microbiota with other studies is critical to assessing novel treatment options in light of a rapidly growing T2D health epidemic.
0

Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia

Amelia Lindsey et al.May 7, 2020
+3
S
D
A
The bacterial endosymbiont Wolbachia manipulates arthropod reproduction to facilitate its maternal spread through populations. The most common manipulation is cytoplasmic incompatibility (CI): Wolbachia-infected males produce modified sperm that cause embryonic mortality, unless rescued by eggs harboring the same Wolbachia. The genes underlying CI, cifA and cifB, were recently identified in the eukaryotic association module of Wolbachia's prophage WO. Here, we use transcriptomic and genomic approaches to address three important evolutionary facets of these genes. First, we assess whether or not cifA and cifB comprise a classic toxin-antitoxin operon, and show they do not form an operon in strain wMel. They coevolve but exhibit strikingly distinct expression across host development. Second, we provide new domain and functional predictions across homologs within Wolbachia, and we show amino acid sequences vary substantially across the genus. Lastly, we investigate conservation of cifA and cifB and find degradation and loss of the genes is common in strains that no longer induce CI. Taken together, we find no evidence for the operon hypothesis in wMel, provide functional annotations that broaden the potential mechanisms of CI induction, illuminate recurrent erosion of cifA and cifB in non-CI strains, and advance an understanding of the most widespread form of reproductive parasitism.
0

Gut Microbiota Diversity across Ethnicities in the United States

Andrew Brooks et al.May 6, 2020
S
R
S
A
Composed of hundreds of microbial species, the composition of the human gut microbiota can vary with chronic diseases underlying health disparities that disproportionally affect ethnic minorities. However, the influence of ethnicity on the gut microbiota remains largely unexplored and lacks reproducible generalizations across studies. By distilling associations between ethnicity and gut microbiota variation in two American datasets including 1,673 individuals, we report 12 microbial genera and families that reproducibly vary by ethnicity. Interestingly, a majority of these microbial taxa, including the most heritable bacterial family, Christensenellaceae, overlap with genetically-associated lineages and form co-occurring clusters of taxa linked by similar fermentative and methanogenic metabolic processes. These results demonstrate recurrent associations between specific taxa in the gut microbiota and ethnicity, providing hypotheses for examining specific members of the gut microbiota as mediators of health disparities.
1

Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease

Xin Zhou et al.May 27, 2024
+34
D
X
X
To understand dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune and clinical markers of microbiomes from four body sites in 86 participants over six years. We found that microbiome stability and individuality are body-site-specific and heavily influenced by the host. The stool and oral microbiome were more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. Also, we identified individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlated across body sites, suggesting systemic coordination influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals showed altered microbial stability and associations between microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.The stability of the human microbiome varies among individuals and body sites.Highly individualized microbial genera are more stable over time.At each of the four body sites, systematic interactions between the environment, the host and bacteria can be detected.Individuals with insulin resistance have lower microbiome stability, a more diversified skin microbiome, and significantly altered host-microbiome interactions.