MN
Michelle Nguyen
Author with expertise in Regulatory T Cell Development and Function
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(38% Open Access)
Cited by:
2,775
h-index:
24
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiplexed droplet single-cell RNA-sequencing using natural genetic variation

Hyun Kang et al.Dec 11, 2017
Droplet single-cell RNA-seq is applied to large numbers of pooled samples from unrelated individuals. Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes. However, assessing differential expression across multiple individuals has been hampered by inefficient sample processing and technical batch effects. Here we describe a computational tool, demuxlet, that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets). These capabilities enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows. Using simulated data, we show that 50 single-nucleotide polymorphisms (SNPs) per cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. Given genotyping data for each of eight pooled samples, demuxlet correctly recovers the sample identity of >99% of singlets and identifies doublets at rates consistent with previous estimates. We apply demuxlet to assess cell-type-specific changes in gene expression in 8 pooled lupus patient samples treated with interferon (IFN)-β and perform eQTL analysis on 23 pooled samples.
0
Citation894
0
Save
0

Discovery of stimulation-responsive immune enhancers with CRISPR activation

Dimitre Simeonov et al.Aug 29, 2017
The authors use tiled CRISPR activation for functional enhancer discovery across two autoimmunity risk loci, CD69 and IL2RA, and identify elements with features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours a fine-mapped autoimmunity risk variant. Enhancers are gene regulatory elements that shape cell-type-specific transcriptional programs and responses to specific extracellular cues. Mapping enhancer function is challenging because of our limited understanding of the cellular context in which each enhancer contributes to gene regulation. Here, Alexander Marson and colleagues use a tiled CRISPR activation (CRISPRa) approach for functional enhancer discovery across two autoimmunity risk loci: CD69 and IL2RA. They identify several elements with features of stimulus-responsive enhancers, including an IL2RA enhancer that contains an autoimmunity risk variant. This approach should be useful for discovering functional enhancers without prior knowledge of their specific biological context. The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1,2,3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4,5,6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.
0
Citation277
0
Save
0

Dissecting quantitative trait nucleotides by saturation genome editing

Kevin Roy et al.Feb 2, 2024
Genome editing technologies have the potential to transform our understanding of how genetic variation gives rise to complex traits through the systematic engineering and phenotypic characterization of genetic variants. However, there has yet to be a system with sufficient efficiency, fidelity, and throughput to comprehensively identify causal variants at the genome scale. Here we explored the ability of templated CRISPR editing systems to install natural variants genome-wide in budding yeast. We optimized several approaches to enhance homology-directed repair (HDR) with donor DNA templates, including donor recruitment to target sites, single-stranded donor production by bacterial retrons, and in vivo plasmid assembly. We uncovered unique advantages of each system that we integrated into a single superior system named MAGESTIC 3.0. We used MAGESTIC 3.0 to dissect causal variants residing in 112 quantitative trait loci across 32 environmental conditions, revealing an enrichment for missense variants and loci with multiple causal variants. MAGESTIC 3.0 will facilitate the functional analysis of the genome at single-nucleotide resolution and provides a roadmap for improving template-based genome editing systems in other organisms.
0

Discovery of an autoimmunity-associated IL2RA enhancer by unbiased targeting of transcriptional activation

Dimitre Simeonov et al.Dec 5, 2016
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell type-specific transcriptional programs and responses to specific extracellular cues1-3. In order to understand the mechanisms by which non-coding genetic variation contributes to disease, systematic mapping of functional enhancers and their biological contexts is required. Here, we develop an unbiased discovery platform that can identify enhancers for a target gene without prior knowledge of their native functional context. We used tiled CRISPR activation (CRISPRa) to synthetically recruit transcription factors to sites across large genomic regions (>100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA (interleukin-2 receptor alpha; CD25). We identified several CRISPRa responsive elements (CaREs) with stimulation-dependent enhancer activity, including an IL2RA enhancer that harbors an autoimmunity risk variant. Using engineered mouse models and genome editing of human primary T cells, we found that sequence perturbation of the disease-associated IL2RA enhancer does not block IL2RA expression, but rather delays the timing of gene activation in response to specific extracellular signals. This work develops an approach to rapidly identify functional enhancers within non-coding regions, decodes a key human autoimmunity association, and suggests a general mechanism by which genetic variation can cause immune dysfunction.
0

Rapid discovery of synthetic DNA sequences to rewrite endogenous T cell circuits

Theodore Roth et al.Apr 12, 2019
Genetically-engineered immune cell therapies have been in development for decades and recently have proven effective to treat some types of cancer. CRISPR-based genome editing methods, enabling more flexible and targeted sequence integrations than viral transduction, have the potential to extend the clinical utility of cell therapies. Realization of this potential depends on improved knowledge of how coding and non-coding sites throughout the genome can be modified efficiently and on improved methods to discover novel synthetic DNA sequences that can be introduced at targeted sites to enhance critical immune cell functions. Here, we developed improved guidelines for non-viral genome targeting in human T cells and a pooled discovery platform to identify synthetic genome modifications that enhance therapeutically-relevant cell functions. We demonstrated the breadth of targetable genomic loci by performing large knock-ins at 91 different genomic sites in primary human T cells, and established the power of flexible genome targeting by generating cells with Genetically Engineered Endogenous Proteins (GEEPs) that seamlessly integrate synthetic and endogenous genetic elements to alter signaling input, output, or regulatory control of genes encoding key immune receptors. Motivated by success in introducing synthetic circuits into endogenous sites, we then developed a platform to facilitate discovery of novel multi-gene sequences that reprogram both T cell specificity and function. We knocked in barcoded pools of large DNA sequences encoding polycistronic gene programs. High-throughput pooled screening of targeted knock-ins to the endogenous T cell receptor (TCR) locus revealed a transcriptional regulator and novel protein chimeras that combined with a new TCR specificity to enhance T cell responses in the presence of suppressive conditions in vitro and in vivo. Overall, these pre-clinical studies provide flexible tools to discover complex synthetic gene programs that can be written into targeted genome sites to generate more effective therapeutic cells.
0

Multiplexing droplet-based single cell RNA-sequencing using natural genetic barcodes

Hyun Kang et al.Mar 20, 2017
Droplet-based single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes from tens of thousands of cells. Multiplexing samples for single cell capture and library preparation in dscRNA-seq would enable cost-effective designs of differential expression and genetic studies while avoiding technical batch effects, but its implementation remains challenging. Here, we introduce an in-silico algorithm demuxlet that harnesses natural genetic variation to discover the sample identity of each cell and identify droplets containing two cells. These capabilities enable multiplexed dscRNA-seq experiments where cells from unrelated individuals are pooled and captured at higher throughput than standard workflows. To demonstrate the performance of demuxlet, we sequenced 3 pools of peripheral blood mononuclear cells (PBMCs) from 8 lupus patients. Given genotyping data for each individual, demuxlet correctly recovered the sample identity of > 99% of singlets, and identified doublets at rates consistent with previous estimates. In PBMCs, we demonstrate the utility of multiplexed dscRNA-seq in two applications: characterizing cell type specificity and inter-individual variability of cytokine response from 8 lupus patients and mapping genetic variants associated with cell type specific gene expression from 23 donors. Demuxlet is fast, accurate, scalable and could be extended to other single cell datasets that incorporate natural or synthetic DNA barcodes.
Load More