EL
Evan Lloyd
Author with expertise in Evolutionary Patterns in Subterranean Environments
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
8
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
24

A brain-wide analysis maps structural evolution to distinct anatomical modules

Robert Kozol et al.Mar 18, 2022
Abstract Brain anatomy is highly variable and it is widely accepted that anatomical variation impacts brain function and ultimately behavior. The structural complexity of the brain, including differences in volume and shape, presents an enormous barrier to define how variability underlies differences in function. In this study, we sought to investigate the evolution of brain anatomy in relation to brain region volume and shape across the brain of a single species with variable genetic and anatomical morphs. We generated a high-resolution brain atlas for the blind Mexican cavefish and coupled the atlas with automated computational tools to directly assess brain region shape and volume variability across all populations. We measured the volume and shape of every neuroanatomical region of the brain and assess correlations between anatomical regions in surface, cavefish and surface to cave F 2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted in cavefish, while ventral regions have expanded. Interestingly, in hybrid fish the volume and shape of dorsal regions are inversely proportional to ventral regions. This trend is true for both volume and shape, suggesting that these two parameters share developmental mechanisms necessary for remodeling the entire brain. Given the high conservation of brain anatomy and function among vertebrate species, we expect these data to studies reveal generalized principles of brain evolution and show that Astyanax provides a system for functionally determining basic principles of brain evolution by utilizing the independent genetic diversity of different morphs, to test how genes influence early patterning events to drive brain-wide anatomical evolution.
24
Citation3
0
Save
27

Diversity in rest-activity patterns among Lake Malawi cichlid fishes suggests novel axis of habitat partitioning

Evan Lloyd et al.Jul 14, 2020
Abstract Animals display remarkable diversity in rest and activity patterns that are regulated by endogenous foraging strategies, social behaviors, and predator avoidance. Alteration in the circadian timing of activity or the duration of rest-wake cycles provide a central mechanism for animals to exploit novel niches. The diversity of the 3000+ cichlid species throughout the world provides a unique opportunity to examine variation in locomotor activity and rest. Lake Malawi alone is home to over 500 species of cichlids that display divergent behaviors and inhabit well-defined niches throughout the lake. These species are presumed to be diurnal, though this has never been tested systematically. Here, we measure locomotor activity across the circadian cycle in 12 cichlid species from divergent lineages and distinct habitats. We document surprising variability in the circadian time of locomotor activity and the duration of rest. In particular, we identify a single species, Tropheops sp. “red cheek” that is nocturnal. Nocturnal behavior was maintained when fish were provided shelter, but not under constant darkness, suggesting it results from acute response to light rather than an endogenous circadian rhythm. Finally, we show that nocturnality is associated with increased eye size, suggesting a link between visual processing and nighttime activity. Together, these findings identify diversity of locomotor behavior in Lake Malawi cichlids and provide a system for investigating the molecular and neural basis underlying the evolution of nocturnal activity.
27
Paper
Citation1
0
Save
3

Characterizing the genetic basis of trait evolution in the Mexican cavefish

Camila Oliva et al.Dec 17, 2021
Abstract Evolution in response to a change in ecology often coincides with various morphological, physiological, and behavioral traits. For most organisms little is known about the genetic and functional relationship between evolutionarily derived traits, representing a critical gap in our understanding of adaptation The Mexican tetra, Astyanax mexicanus , consists of largely independent populations of fish that inhabit at least 30 caves in Northeast Mexico, and a surface fish population, that inhabits the rivers of Mexico and Southern Texas. The recent application of molecular genetic approaches combined with behavioral phenotyping have established A. mexicanus as a model for studying the evolution of complex traits. Cave populations of A. mexicanus are interfertile with surface populations and have evolved numerous traits including eye degeneration, insomnia, albinism and enhanced mechanosensory function. The interfertility of different populations from the same species provides a unique opportunity to define the genetic relationship between evolved traits and assess the co-evolution of behavioral and morphological traits with one another. To define the relationships between morphological and behavioral traits, we developed a pipeline to test individual fish for multiple traits. This pipeline confirmed differences in locomotor activity, prey capture, and startle reflex between surface and cavefish populations. To measure the relationship between traits, individual F2 hybrid fish were characterized for locomotor behavior, prey-capture behavior, startle reflex and morphological attributes. Analysis revealed an association between body length and slower escape reflex, suggesting a trade-off between increased size and predator avoidance in cavefish. Overall, there were few associations between individual behavioral traits, or behavioral and morphological traits, suggesting independent genetic changes underlie the evolution of behavioral and morphological traits. Taken together, this approach provides a novel system to identify genes that underlie naturally occurring genetic variation in morphological and behavioral traits.
3
Paper
Citation1
0
Save
15

Neurofibromin 1 mediates sleep depth in Drosophila

Elizabeth Brown et al.Sep 19, 2022
Abstract Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin ( Nf1 ) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we use indirect calorimetry to define the role of Nf1 on sleep-dependent changes in metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABA receptor Rdl . Selective knockdown of Nf1 in Rdl -expressing neurons increases gut permeability and reactive oxygen species (ROS) in the gut, suggesting a critical role for deep sleep in gut homeostasis. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila .
15
Citation1
0
Save
0

Aging is associated with a modality-specific decline in taste

Elizabeth Brown et al.Feb 2, 2024
ABSTRACT Deficits in chemosensory processing are associated with healthy aging, as well as numerous neurodegenerative disorders, including Alzheimer’s Disease (AD). In many cases, chemosensory deficits are harbingers of neurodegenerative disease, and understanding the mechanistic basis for these changes may provide insight into the fundamental dysfunction associated with aging and neurodegeneration. The fruit fly, Drosophila melanogaster , is a powerful model for studying chemosensation, aging, and aging-related pathologies, yet the effects of aging and neurodegeneration on chemosensation remain largely unexplored in this model, particularly with respect to taste. To determine whether the effects of aging on taste are conserved in flies, we compared the response of flies to different appetitive tastants. Aging impaired response to sugars, but not medium-chain fatty acids that are sensed by a shared population of neurons, revealing modality-specific deficits in taste. Selective expression of the human amyloid beta (Aβ) 1-42 peptide bearing the Arctic mutation (E693E) associated with early onset AD in the neurons that sense sugars and fatty acids phenocopies the effects of aging, suggesting that the age-related decline in response is localized to gustatory neurons. Functional imaging of gustatory axon terminals revealed reduced response to sugar, but not fatty acids. Axonal innervation of the fly taste center was largely intact in aged flies, suggesting that reduced sucrose response does not derive from neurodegeneration. Conversely, expression of the amyloid peptide in sweet-sensing taste neurons resulted in reduced innervation of the primary fly taste center. A comparison of transcript expression within the sugar-sensing taste neurons revealed age-related changes in 66 genes, including a reduction in odorant-binding protein class genes that are also expressed in taste sensilla. Together, these findings suggest that deficits in taste detection may result from signaling pathway-specific changes, while different mechanisms underly taste deficits in aged and AD model flies. Overall, this work provides a model to examine cellular deficits in neural function associated with aging and AD.
0
Citation1
0
Save
1

Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids

Evan Lloyd et al.May 27, 2023
Abstract Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, raising the possibility that a shift from diurnal to nocturnal behavior, or vice versa, can occur rapidly. In Africa’s Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.
0

Postprandial Sleep in Short‐Sleeping Mexican Cavefish

Kathryn Gallman et al.Nov 13, 2024
ABSTRACT Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus , have independently evolved sleep loss and increased food consumption compared to surface‐dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations of A. mexicanus . Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short‐sleeping populations of cavefish, suggesting sleep‐feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
1

Elevated DNA Damage without signs of aging in the short-sleeping Mexican Cavefish

Evan Lloyd et al.Apr 21, 2024
Abstract Dysregulation of sleep has widespread health consequences and represents an enormous health burden. Short-sleeping individuals are predisposed to the effects of neurodegeneration, suggesting a critical role for sleep in the maintenance of neuronal health. While the effects of sleep on cellular function are not completely understood, growing evidence has identified an association between sleep loss and DNA damage, raising the possibility that sleep facilitates efficient DNA repair. The Mexican tetra fish, Astyanax mexicanus provides a model to investigate the evolutionary basis for changes in sleep and the consequences of sleep loss. Multiple cave-adapted populations of these fish have evolved to sleep for substantially less time compared to surface populations of the same species without identifiable impacts on healthspan or longevity. To investigate whether the evolved sleep loss is associated with DNA damage and cellular stress, we compared the DNA Damage Response (DDR) and oxidative stress levels between A. mexicanus populations. We measured markers of chronic sleep loss and discovered elevated levels of the DNA damage marker γH2AX in the brain, and increased oxidative stress in the gut of cavefish, consistent with chronic sleep deprivation. Notably, we found that acute UV-induced DNA damage elicited an increase in sleep in surface fish but not in cavefish. On a transcriptional level, only the surface fish activated the photoreactivation repair pathway following UV damage. These findings suggest a reduction of the DDR in cavefish compared to surface fish that coincides with elevated DNA damage in cavefish. To examine DDR pathways at a cellular level, we created an embryonic fibroblast cell line from the two populations of A. mexicanus . We observed that both the DDR and DNA repair were diminished in the cavefish cells, corroborating the in vivo findings and suggesting that the acute response to DNA damage is lost in cavefish. To investigate the long-term impact of these changes, we compared the transcriptome in the brain and gut of aged surface fish and cavefish. Strikingly, many genes that are differentially expressed between young and old surface fish do not transcriptionally vary by age in cavefish. Taken together, these findings suggest that have developed resilience to sleep loss, despite possessing cellular hallmarks of chronic sleep deprivation.
Load More