ZY
Zu‐Xi Yu
Author with expertise in Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
0
h-index:
33
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Mono-ADP-ribosyltransferase 1 (Artc1)-deficiency decreases tumorigenesis, increases inflammation, decreases cardiac contractility, and reduces survival

Hiroko Ishiwata-Endo et al.Feb 6, 2023
Arginine-specific mono-ADP-ribosylation is a reversible post-translational modification; arginine-specific, cholera toxin-like mono-ADP-ribosyltransferases (ARTCs) transfer ADP-ribose from NAD + to arginine, followed by cleavage of ADP-ribose-(arginine)protein bond by ADP-ribosylarginine hydrolase 1 (ARH1), generating unmodified (arginine)protein. ARTC1 has been shown to enhance tumorigenicity as does Arh1 deficiency. In this study, Artc1 -KO and Artc1/Arh1 -double-KO mice showed decreased spontaneous tumorigenesis and increased age-dependent, multi-organ inflammation with upregulation of pro-inflammatory cytokine TNF- α . In a xenograft model using tumorigenic Arh1 -KO mouse embryonic fibroblasts (MEFs), tumorigenicity was decreased in Artc1 -KO and heterozygous recipient mice, with tumor infiltration by CD8 + T cells and macrophages, leading to necroptosis, suggesting that ARTC1 promotes the tumor microenvironment. Furthermore, Artc1/Arh1 -double-KO MEFs showed decreased tumorigenesis in nude mice, showing that tumor cells as well as tumor microenvironment require ARTC1. By echocardiography and MRI, Artc1 -KO and heterozygous mice showed male-specific, reduced myocardial contractility. Furthermore, Artc1 -KO male hearts exhibited enhanced susceptibility to myocardial ischemia-reperfusion-induced injury with increased receptor-interacting protein kinase 3 (RIP3) protein levels compared to WT mice, suggesting that ARTC1 suppresses necroptosis. Overall survival rate of Artc1 -KO was less than their Artc1 -WT counterparts, primarily due to enhanced immune response and inflammation. Thus, anti-ARTC1 agents may reduce tumorigenesis but may increase multi-organ inflammation and decrease cardiac contractility.
3

ADP-ribose-acceptor hydrolase 2(Arh2) deficiency results in cardiac dysfunction, tumorigenesis, inflammation, and decreased survival

Jirō Katō et al.Feb 7, 2023
ADP-ribosylation is a reversible reaction with ADP-ribosyltransferases catalyzing the forward reaction and ADP-ribose-acceptor hydrolases (ARHs) hydrolyzing the ADP-ribose acceptor bond. ARH2 is a member of the 39-kDa ARH family (ARH1-3), which is expressed in heart and skeletal muscle. ARH2 failed to exhibit any in vitro enzymatic activity. To determine its possible in vivo activities, Arh2 -knockout (KO) and - heterozygous (Het) mice were generated using CRISPR-Cas9. Arh2 -KO mice exhibited decreased cardiac contractility by MRI, echocardiography and dobutamine stress with cardiomegaly and abnormal motor function. Arh2 -Het mice showed results similar to those seen in Arh2 -KO mice except for cardiomegaly. Arh2 -KO and -Het mice and mouse embryonic fibroblasts (MEFs) developed spontaneous tumors and subcutaneous tumors in nude mice. We identified 13 mutations in Arh2 -Het MEFs and heterozygous tumors, corresponding to human ARH2 mutations in cancers obtained from COSMIC. Of interest, the L116R mutation in Arh2 gene plays a critical role in aggressive tumorigenesis in nude mice, corresponding to human ARH2 mutations in stomach adenocarcinoma. Both genders of Arh2 -KO and -Het mice showed increased unexpectedly deaths and decreased survival rate during a 24-month observation, caused by tumor, inflammation, non-inflammation (e.g., cardiomegaly, dental dysplasia), and congenital diseases. Thus, Arh2 plays a pivotal role in cardiac function, tumorigenesis, inflammation, and overall survival.
1

A PARP inhibitor, rucaparib, improves cardiac dysfunction inADP-ribose-acceptor hydrolase 3(Arh3) deficiency

Sachiko Yamashita et al.Feb 7, 2023
Patients with ADP-ribose-acceptor hydrolase 3 ( ARH3 ) deficiency exhibit stress-induced childhood-onset neurodegeneration with ataxia and seizures (CONDSIAS). ARH3 degrades protein-linked poly(ADP- ribose) (PAR) synthesized by poly(ADP-ribose)polymerase (PARP)-1 during oxidative stress, leading to cleavage of the ADP-ribose linked to protein. ARH3 deficiency leads to excess accumulation of PAR, resulting in PAR-dependent cell death or parthanatos. Approximately one-third of patients with homozygous mutant ARH3 die from cardiac arrest, which has been described as neurogenic, suggesting that ARH3 may play an important role in maintaining myocardial function. To address this question, cardiac function was monitored in Arh3 -knockout (KO) and - heterozygous (HT) mice.Arh3 -KO male mice displayed cardiac hypertrophy by histopathology and decreased cardiac contractility assessed by MRI. In addition, both genders of Arh3 -KO and -HT mice showed decreased cardiac contractility by dobutamine stress test assessed by echocardiography. A direct role of ARH3 on myocardial function was seen with a Langendorff-perfused isolated heart model . Arh3 -KO male mouse hearts showed decreased post-ischemic rate pressure products, increased size of ischemia-reperfusion (IR) infarcts, and elevated PAR levels. Consistently, in vivo IR injury showed enhanced infarct size in Arh3 -KO mice in both genders. In addition, Arh3 -HT male mice showed increased size of in vivo IR infarcts. Treatment with an FDA-approved PARP inhibitor, rucaparib, improved cardiac contractility during dobutamine-induced stress and exhibited reduced size of in vivo IR infarcts. To understand better the role of ARH3, CRISPR-Cas9 was used to generate different Arh3 genotypes of myoblasts and myotubes. Incubation with H2O2 decreased viability of Arh3 -KO and -HT myoblasts and myotubes, resulting in PAR-dependent cell death that was reduced by PARP inhibitors or by transfection with the Arh3 gene.ARH3 regulates PAR homeostasis in myocardium to preserve function and protect against oxidative stress; PARP inhibitors reduce the myocardial dysfunction seen with Arh3 mutations.
0

RNF144A shapes the hierarchy of cytokine signaling to provide protective immunity against influenza

Behdad Afzali et al.Sep 26, 2019
Cytokine-induced signaling pathways are tightly regulated and self-limiting, as their dysregulation causes immune disorders and cancer. The precise mechanisms that fine-tune these responses are incompletely understood. We show that the E3 ubiquitin ligase RNF144A is an IL-2/STAT5-induced gene in T cells and critically orchestrates the hierarchy of IL-2R signaling to promote STAT5 activation and limit RAF-ERK-MAPK output from the IL-2R. Mechanistically, RNF144A increased the interaction between IL-2Rβ and STAT5 and polyubiquitinated RAF1, enhancing its proteasomal degradation and preventing the formation of the potent RAF1/BRAF kinase complex. CD8+ T cells from Rnf144a-/- mice had impaired IL-2-induction of effector genes, including Tnf and granzymes, and these mice demonstrated increased susceptibility to influenza. Reduced RNF144A expression was associated with more severe influenza in humans and its expression in patients was a biomarker distinguishing moderate from severe disease. These studies reveal a vital physiological role for RNF144A in maintaining the fidelity of IL-2R signaling in CTLs to prevent severe inflammation in response to infection.
0

Endothelial PHD2 deficiency induces apoptosis resistance and inflammation via AKT activation and AIP1 loss independent of HIF2α

Shuibang Wang et al.Feb 5, 2024
ABSTRACT BACKGROUND In hypoxic and pseudohypoxic rodent models of pulmonary arterial hypertension (PAH), hypoxia-inducible factor (HIF) inhibition reduces disease severity. However, HIF activation alone, due to genetic alterations or use of inhibitors of prolyl hydroxylase domain (PHD) enzymes, has not been definitively shown to cause PAH in humans, indicating the involvement of other mechanisms. METHODS Pseudohypoxia was investigated in primary human lung endothelial cells by silencing PHD2, and in Tie2-Cre / Phd2 knockout mice, a rodent model of PAH. Lung vascular endothelial cells from PAH patients, and lung tissue from both SU5416/hypoxia PAH rats and PAH patients, were examined for validation. RESULTS PHD2 silencing or inhibition, while activating HIF2α, induces apoptosis-resistance, hypo-proliferation, and IFN/STAT activation in endothelial cells, independent of HIF signaling. Mechanistically, PHD2 deficiency activates AKT and ERK, inhibits JNK, and reduces AIP1 (ASK1-interacting protein 1), all independent of HIF2α. Like PHD2, AIP1 silencing affects these same kinase pathways and produces a similar dysfunctional endothelial cell phenotype, which can be partially reversed by AKT inhibition. These findings are corroborated in lung tissues of rodent PAH models and pulmonary vascular endothelial cells and tissues from PAH patients. CONCLUSIONS PHD2 deficiency in lung vascular endothelial cells induces an apoptosis-resistant, inflammatory, and hypo-proliferative phenotype. AKT activation and AIP1 loss, but not HIF signaling, drive these aberrant phenotypic changes. Our study suggests that HIF blockade alone may not suffice for PAH therapy; targeting PHD2, AKT, and AIP1 has the potential for developing more effective treatment. GRAPHIC ABSTRACT Highlights PHD2 silencing in human lung vascular endothelial cells suppresses apoptosis, inhibits proliferation, and activates STAT signaling, effects that persist despite HIF2α inhibition or knockdown. PHD2 silencing activates AKT and ERK, inhibits JNK, and decreases AIP1, all independently of HIF2α Like PHD2, AIP1 silencing led to similar alterations in kinase signaling and endothelial cell phenotypes, which are partially reversed by ATK inhibition. These in vitro findings align with observations in lung vascular endothelial cells and tissues from rodent models of PAH as well as PAH patients.
0

Cardiac Magnetic Resonance Studies in a Large Animal Model that Simulates the Cardiac Abnormalities of Human Septic Shock

Verity Ford et al.Feb 8, 2024
Abstract Background Septic shock, in humans and in our well-established animal model, is associated with increases in biventricular end diastolic volume (EDV) and decreases in ejection fraction (EF). These abnormalities occur over 2 days and reverse within 10 days. Septic non-survivors do not develop an increase in EDV. The mechanism for this cardiac dysfunction and EDV differences is unknown. Methods Purpose-bred beagles randomized to receive intrabronchial Staphylococcus aureus (n=27) or saline (n=6) were provided standard ICU care including sedation, mechanical ventilation, and fluid resuscitation to a pulmonary arterial occlusion pressure of over 10mmHg. No catecholamines were administered. Over 96h, cardiac magnetic resonance imaging, echocardiograms, and invasive hemodynamics were serially performed, and laboratory data was collected. Tissue was obtained at 66h from six septic animals. Results From 0-96h after bacterial challenge, septic animals vs. controls had significantly increased left ventricular wall edema (6%) and wall thinning with loss of mass (15%) which was more pronounced at 48h in non-survivors than survivors. On histology, edema was located predominantly in myocytes, the interstitium, and endothelial cells. Edema was associated with significantly worse biventricular function (lower EFs), ventricular-arterial coupling, and circumferential strain. In septic animals, from 0-24h, the EDV decreased from baseline and, despite cardiac filling pressures being similar, decreased significantly more in non-survivors. From 24-48h, all septic animals had increases in biventricular chamber sizes. Survivors biventricular EDVs were significantly greater than baseline and in non-survivors, where biventricular EDVs were not different from baseline. Preload, afterload, or HR differences did not explain these differential serial changes in chamber size. Conclusion Systolic and diastolic cardiac dysfunction during sepsis is associated with ventricular wall edema. Rather than differences in preload, afterload, or heart rate, structural alterations to the ventricular wall best account for the volume changes associated with outcome during sepsis. In non-survivors, from 0-24h, sepsis induces a more severe diastolic dysfunction, further decreasing chamber size. The loss of left ventricular mass with wall thinning in septic survivors may, in part explain, the EDV increases from 24-48h. However, these changes continued and even accelerated into the recovery phase consistent with a reparative process rather than ongoing injury. Clinical Perspective What is new? Utilizing multimodal imaging and hemodynamics, we demonstrate the cardiac changes of sepsis have injury and reparative phases. The injury phase (0-24h) has EDV decreases more profound in non-survivors and is associated with worse ventricular compliance, myocardial edema, and diastolic dysfunction. The recovery phase has left ventricular mass loss with wall thinning in survivors that explains the EDV increases (24-96h). These progressed into the EF recovery phase consistent with a reparative process removing damaged tissue. This is the first controlled CMR sepsis study supporting ventricular wall edema is a fundamental aspect of sepsis pathophysiology and dry mass loss a reparative mechanism. What are the clinical implications? Despite optimizing filling pressures, the cardiac changes in ventricular wall structure and function associated with survival and non-survival in sepsis still occurred, thereby discounting fluid resuscitation as the major factor of therapeutic importance for cardiac function and survival. The changes reported here have potential implications for sepsis treatment especially in the field of fluid resuscitation. These findings yield new understanding into the pathophysiology of sepsis cardiac dysfunction and allow for novel phenotyping and prognosticating of the syndrome with ventricular compliance and EDVs. This also offers potentially high yielding targets for research for new therapeutic approaches for sepsis and heart failure.