CT
Charisios Tsiairis
Author with expertise in Evolution and Diversity of Cnidarians and Jellyfish Blooms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
10
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Wnt3 expression as a readout of tissue stretching during Hydra regeneration

Jaroslav Ferenc et al.Dec 22, 2020
Abstract Mechanical forces shape cell fate decisions during development and regeneration in many systems. Epithelial lumen volume changes, for example, generate mechanical forces that can be perceived by the surrounding tissue and integrated into cell fate decisions. Similar behavior occurs in regenerating Hydra tissue spheroids, where periodic osmotically driven inflation and deflation cycles generate mechanical stimuli in the form of tissue stretching. Using this model, we investigate how such mechanical input guides the de novo formation of differentiated body parts. We show that the expression of the organizer-defining factor Wnt3 functions as a quantitative readout of cellular stretching and, when supplied externally, enables successful regeneration without mechanical stimulation. This finding represents a previously undescribed cellular mechanism for converting mechanical stimuli to a biochemical signaling readout and guiding cell fate transitions. It also elucidates the role of mechanical oscillations in Hydra regeneration, which long remained unclear. The presence the Wnt/mechanics interplay in Hydra and its relatives underscores the ancient evolutionary history of this crosstalk, possibly extending back to the first metazoans. Since Wnt signaling crosstalks with cellular mechanics in various developmental and disease contexts, it can also represent a conserved feature of this signaling pathway.
19
Citation6
0
Save
0

Developmental function and state transitions of a gene expression oscillator inC. elegans

Milou Meeuse et al.Sep 5, 2019
Abstract Gene expression oscillators can structure biological events temporally and spatially. Different biological functions benefit from distinct oscillator properties. Thus, finite developmental processes rely on oscillators that start and stop at specific times; a poorly understood behavior. Here, we have characterized a massive gene expression oscillator comprising >3,700 genes in C. elegans larvae. We report that oscillations initiate in embryos, arrest transiently after hatching and in response to perturbation, and cease in adults. Experimental observation of the transitions between oscillatory and non-oscillatory states at a resolution where we can identify bifurcation points reveals an oscillator operating near a Saddle Node on Invariant Cycle (SNIC) bifurcation. These findings constrain the architecture and mathematical models that can represent this oscillator. They also reveal that oscillator arrests occur reproducibly in a specific phase. Since we find oscillations to be coupled to developmental processes, including molting, this characteristic of SNIC bifurcations thus endows the oscillator with the potential to halt larval development at defined intervals, and thereby execute a developmental checkpoint function.
0
Citation2
0
Save
12

Cellular Synchronisation through Unidirectional and Phase-Gated Signalling

Grégory Roth et al.Nov 27, 2020
Abstract Multiple natural and artificial oscillator systems achieve synchronisation when oscillators are coupled. The coupling mechanism, essentially the communication between oscillators, is often assumed to be continuous and bidirectional. However, the cells of the presomitic mesoderm synchronise their gene expression oscillations through Notch signalling, which is intermittent and directed from a ligand-presenting to a receptor-presenting cell. Motivated by this mode of communication we present a phase-gated and unidirectional coupling mechanism. We identify conditions under which it can successfully bring two or more oscillators to cycle in-phase. In the presomitic mesoderm we observed the oscillatory dynamics of two synchronizing cell populations and record one population halting its pace while the other keeps undisturbed, as would be predicted from our model. For the same system another important prediction, convergence to a specific range of phases upon synchronisation is also confirmed. Thus, the proposed mechanism accurately describes the coordinated oscillations of the presomitic mesoderm cells and provides an alternative framework for deciphering synchronisation.
12
Citation1
0
Save