JL
João Leandro
Author with expertise in Metabolic Disorders and Biochemical Genetics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
0
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex

João Leandro et al.Jan 21, 2020
+17
H
S
J
DHTKD1 is the E1 component of the 2-oxoadipic acid dehydrogenase complex (OADHc), which functions in the L-lysine degradation pathway. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q (CMT2Q) and eosinophilic esophagitis (EoE). A crystal structure and inhibitors of DHTKD1 could improve the understanding of these clinically distinct disorders, but are currently not available. Here we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.1 Å. The protein assembles as a dimer with residues from both monomers contributing to cofactor binding. We also report the impact of ten DHTKD1 missense mutations on the encoded proteins by enzyme kinetics, thermal stability and structural modeling. Some DHTKD1 variants displayed impaired folding (S777P and S862I), whereas other substitutions rendered the enzyme inactive (L234G, R715C and R455Q) or affected the thermal stability and catalytic efficiency (V360A and P773L). Three variants (R163Q, Q305H and G729R) surprisingly showed wild type like properties. Our work provides a structural basis for further understanding of the function of DHTKD1 and a starting point for selective small molecule inhibitors of the enzyme, which could help tease apart the role of this enzyme in several human pathologies.
0

Characterization, structure and inhibition of the human succinyl-CoA:glutarate-CoA transferase, a genetic modifier of glutaric aciduria type 1

Susmita Khamrui et al.Feb 7, 2024
+10
R
T
S
Abstract Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or non-toxic metabolites. Here, we report a novel target, SUGCT, which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA. We report the structure of SUGCT, the first eukaryotic structure of a type III CoA transferase, develop a high-throughput enzyme assay and a cell-based assay, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme validating the screening approach. These results may form the basis for future development of new pharmacological intervention to treat GA1.
11

Characterization and structure of the human lysine-2-oxoglutarate reductase domain, a novel therapeutic target for treatment of glutaric aciduria type 1

João Leandro et al.May 20, 2022
+8
S
R
J
ABSTRACT In humans, a single enzyme 2-aminoadipic semialdehyde synthase (AASS) catalyzes the initial two critical reactions in the lysine degradation pathway. This enzyme evolved to be a bifunctional enzyme with both lysine 2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase domains (SDH). Moreover, AASS is a unique drug target for metabolic genetic diseases such as glutaric aciduria type 1 that arise from deficiencies downstream in the lysine degradation pathway. While work has been done to elucidate the SDH domain structurally and to develop inhibitors, neither has been done for the LOR domain. Here, we purify and characterize LOR, show that AASS is rate-limiting upon high lysine exposure of mice, and present the crystal structure of the human LOR domain, which should enable future efforts to identify inhibitors of this novel drug target.
1

Acyl-CoA dehydrogenase substrate promiscuity limits the potential for development of substrate reduction therapy in disorders of valine and isoleucine metabolism

Sander Houten et al.Nov 22, 2022
+6
W
T
S
Abstract Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA) and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB ) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.
0

DHTKD1 and OGDH display in vivo substrate overlap and form a hybrid ketoacid dehydrogenase complex

João Leandro et al.May 22, 2019
+5
J
T
J
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here we show that loss of DHTKD1 in GCDH-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine, and demonstrate that OGDH is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, DLST and DLD to form a hybrid α-ketoglutaric and α-ketoadipic acid dehydrogenase complex. In summary, α-ketoadipic acid is an in vivo substrate for DHTKD1, but also OGDH. The classic α-ketoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards α-ketoadipic acid.
0

Characterization, Structure, and Inhibition of the Human Succinyl-CoA:glutarate-CoA Transferase, a Putative Genetic Modifier of Glutaric Aciduria Type 1

Ruoxi Wu et al.Jun 24, 2024
+9
T
S
R
Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or nontoxic metabolites. Here, we report a putative novel target, succinyl-CoA:glutarate-CoA transferase (SUGCT), which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA and the derived 3-hydroxyglutaric acid. SUGCT is a type III CoA transferase that uses succinyl-CoA and glutaric acid as substrates. We report the structure of SUGCT, develop enzyme- and cell-based assays, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme in a high-throughput screen of FDA-approved compounds. The cocrystal structure of SUGCT with losartan carboxylic acid revealed a novel pocket in the active site and further validated the high-throughput screening approach. These results may form the basis for the future development of new pharmacological intervention to treat GA1.