HB
Haim Barr
Author with expertise in Click Chemistry in Chemical Biology and Drug Development
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
713
h-index:
21
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor

Daniel Zaidman et al.Sep 22, 2020
Abstract Designing covalent inhibitors is a task of increasing importance in drug discovery. Efficiently designing irreversible inhibitors, though, remains challenging. Here, we present covalentizer , a computational pipeline for creating irreversible inhibitors based on complex structures of targets with known reversible binders. For each ligand, we create a custom-made focused library of covalent analogs. We use covalent docking, to dock these tailored covalent libraries and to find those that can bind covalently to a nearby cysteine while keeping some of the main interactions of the original molecule. We found ~11,000 cysteines in close proximity to a ligand across 8,386 protein-ligand complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In prospective evaluation against a panel of kinases, five out of nine predicted covalent inhibitors showed IC 50 between 155 nM - 4.2 μM. Application of the protocol to an existing SARS-CoV-1 M pro reversible inhibitor led to a new acrylamide inhibitor series with low micromolar IC 50 against SARS-CoV-2 M pro . The docking prediction was validated by 11 co-crystal structures. This is a promising lead series for COVID-19 antivirals. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.
1
Citation9
0
Save
41

Fragment-Based Hit Discovery via Unsupervised Learning of Fragment-Protein Complexes

William McCorkindale et al.Nov 24, 2022
Abstract The process of finding molecules that bind to a target protein is a challenging first step in drug discovery. Crystallographic fragment screening is a strategy based on elucidating binding modes of small polar compounds and then building potency by expanding or merging them. Recent advances in high-throughput crystallography enable screening of large fragment libraries, reading out dense ensembles of fragments spanning the binding site. However, fragments typically have low affinity thus the road to potency is often long and fraught with false starts. Here, we take advantage of high-throughput crystallography to reframe fragment-based hit discovery as a denoising problem – identifying significant pharmacophore distributions from a fragment ensemble amid noise due to weak binders – and employ an unsupervised machine learning method to tackle this problem. Our method screens potential molecules by evaluating whether they recapitulate those fragment-derived pharmacophore distributions. We retrospectively validated our approach on an open science campaign against SARS-CoV-2 main protease (Mpro), showing that our method can distinguish active compounds from inactive ones using only structural data of fragment-protein complexes, without any activity data. Further, we prospectively found novel hits for Mpro and the Mac1 domain of SARS-CoV-2 non-structural protein 3. More broadly, our results demonstrate how unsupervised machine learning helps interpret high throughput crystallography data to rapidly discover of potent chemical modulators of protein function.
0

Pan-cancer single cell RNA-seq uncovers recurring programs of cellular heterogeneity

Gabriela Kinker et al.Oct 21, 2019
Cultured cell lines are the workhorse of cancer research, but it is unclear to what extent they recapitulate the cellular heterogeneity observed among malignant cells in tumors, given the absence of a native tumor microenvironment. Here, we used multiplexed single cell RNA-Seq to profile ~200 cancer cell lines. We uncovered expression programs that are recurrently heterogeneous within many cancer cell lines and are largely independent of observed genetic diversity. These programs of heterogeneity are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial-to-mesenchymal transition (EMT), and protein maturation and degradation. Notably, some of these recurrent programs recapitulate those seen in human tumors, suggesting a prominent role of intrinsic plasticity in generating intra-tumoral heterogeneity. Moreover, the data allowed us to prioritize specific cell lines as model systems of cellular plasticity. We used two such models to demonstrate the dynamics, regulation and vulnerabilities associated with a cancer senescence program observed both in cell lines and in human tumors. Our work describes the landscape of cellular heterogeneity in diverse cancer cell lines, and identifies recurrent patterns of expression heterogeneity that are shared between tumors and specific cell lines and can thus be further explored in follow up studies.
0

High throughput screening identifies broad-spectrum Coronavirus entry inhibitors

Suman Khan et al.Jan 1, 2023
The Covid-19 pandemic highlighted the pressing need for antiviral therapeutics capable of mitigating infection and spread of emerging coronaviruses (CoVs). A promising therapeutic strategy lies in inhibiting viral entry mediated by the Spike (S) glycoprotein. To identify small molecule inhibitors that block entry downstream of receptor binding, we established a high-throughput screening (HTS) platform based on pseudoviruses. We employed a three-step process to screen nearly 200,000 small molecules. First, we identified potential inhibitors by assessing their ability to inhibit pseudoviruses bearing the SARS-CoV-2 S glycoprotein. Subsequent counter-screening against pseudoviruses with the Vesicular Stomatitis Virus spike glycoprotein (VSV-G), yielding sixty-five SARS-CoV-2 S-specific inhibitors. These were further tested against pseudoviruses bearing the MERS-CoV S glycoprotein, which uses a different receptor. Out of these, five compounds including the known broad-spectrum inhibitor Nafamostat, were subjected to further validation and tested them against pseudoviruses bearing the S glycoprotein of the alpha, delta, and omicron variants as well as against bona fide SARS-CoV-2 in vitro. This rigorous approach revealed a novel inhibitor and its derivative as a potential broad-spectrum antiviral. These results validate the HTS platform and set the stage for lead optimization and future pre-clinical, in vivo studies.
0

Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas

Danielle Algranati et al.Aug 2, 2024
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
0

Dual Targeting of Histone Deacetylases and MYC as Potential Treatment Strategy for H3-K27M Pediatric Gliomas

Danielle Algranati et al.Feb 9, 2024
Abstract Diffuse midline gliomas (DMG) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in-vivo , in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in-vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Load More